Коротко описано життєвий шлях та основні здобутки
визначного математика, талановитого педагога, доктора
фізико-математичних наук, професора С.Д. Івасишена. Проаналізовано напрямки наукових досліджень Степана Дмитровича та наукові результати, отримані ним з учнями. Високоосвічений і талановитий математик - учений і педагог- Степан Дмитрович постійно й наполегливо працював, реалізуючи себе через працю і шанобливе ставлення до людей.
[1] Pasichnyk H. S. Ivasyshen Stepan Dmytrovych. Biobibliogaphic guide. Chernivtsi national univer.,
Chernivtsi. 2017. (in Ukrainian)
[2] Ivasyshen S.D. Green matrices of parabolic boundary value problems. Vyshcha shkola, Kiev, 1990. (in
Russian)
[3] Eidelman S. D. On one class of paabolic systems. Dokl. AN USSR. 1960. 133 (1), 40–43. (in Russian)
[4] Ivasyshen S. D., Eidelman S. D. $\overrightarrow{2b}$-parabolic systems. Trudy Sem. Funkt. Anal. Inst. Mat. AN Ukr. SSR., Kiev. 1968, 1, 3–175, 271–273. (in Russian)
[5] Eidelman S. D. Parabolic systems. Nauka, Moscow, 1964. (in Russian) English edition: North- Holland,
Amsterdam, 1969.
[6] Chabrowski J. Representation theorems for parabolic systems. J. Austral. Math. Soc. 1982. A.32 (2).
246–288.
[7] Ivasyshen S.D. Integral representation and initial values of solutions of $\overrightarrow{2b}$-parabolic systems. Ukr. Math. Zh. 1990, 42 (4). 500–506.(in Russian)
[8] Ivasyshen S.D. On integal representations and Fatous popeties for solutions of parabolic systems. Uspehi
mat. nauk. 1986. 41 (4). 173–174. (in Russian)
[9] Eidelman S.D., Ivasyshen S.D. On solutions of parabolic equations from families of Banach spaces
depended on time. Birkhäuser, Basel, 2000. (Ser. Operator Theory: Adv. and Appl. 117, 111–125.
[10] Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and
pseudo-differential equations of parabolic type. Birkhäuser, Basel, 2004. (Ser. Operator Theory: Adv.
and Appl. 152).
[11] Ivasyshen S. D. Solutions of parabolic equations from families of Banach spaces depending on time. Mat.
Stud. 2013, 40, 172-181. (in Ukrainian)
[12] Ivasyshen S. D., Kondur O. S. Properties of some class of solutions for the homogeneous parabolic by
Petrovski system of arbitrary order. Dop. NAN Ukr. 1996. (11), 12–15. (in Ukrainian)
[13] Voznyak O. G., Ivasyshen S. D. The Cauchy problem for parabolic systems with degeneration on the
initial hyperplane. Dop. AN Ukr. 1994, (6), 7-11. (in Ukrainian)
[14] Berezan L.P., Ivasyshen S. D. On strongly degenerate $\overrightarrow{2b}$-parabolic systems Visnyk of the Lviv university. Ser. Appl. Math. 1998. (337), 73–76. (in Ukrainian)
[15] Balabushenko T.M., Ivasyshen S.D. On the poperties of $\overrightarrow{2b}$-parabolic systems in regions unbounded by time variation. Mat. Metody Fiz.-Mech. Polya. 2002. 45 (4), 19–26.(in Ukrainian)
[16] Ivasyshen S.,Medynsky I. Properties of integrals which have the type of derivatives of volume potentials
for parabolic systems with degeneration on the initial hyperplane. Mat. Stud. 2000. 13 (1), 33–46.
[17] Ivasyshen S. D.,Medynsky I.P. A priory estimates of solutions for $\overrightarrow{2b}$-parabolic system with the degeneration on the initial hyperplane. Nelin. analiz: Pr. Ukr. Mat. Kongres-2001, Kyiv: Ins. Mat.
NAN Ukr. 2001, 28-41. (in Ukrainian)
[18] Ivasyshen S. D., Medynsky I.P. Properties of integrals of the type derived from volume potentisls for
$\overrightarrow{2b}$-parabolic systems with degeneration on the initial hyperplane. Mat. Metody Fiz.-Mech. Polya. 2002. 45 (4), 76–86. (in Ukrainian)
[19] Ivasyshen S. D., Medynsky I.P. Cauchy problem for $\overrightarrow{2b}$-parabolic systems with degeneration on the initial hyperplane. Mat. Metody Fiz.-Mech. Polya. 2003. 46 (3), 15–24. (in Ukrainian)
[20] Ivasyshen S. D., Medynsky I.P. Local solvability of Cauchy problem for quasi-linear
$\overrightarrow{2b}$-parabolic systems with weak degeneration on initial hyperplane. Mat. Metody Fiz.-Mech. Polya. 2004. 47 (4), 110–114. (in Ukrainian)
[21] Ivasyshen S. D., Lavrenchuk V.P. On a integral representation of solutions for the parabolic system of
linear equations with Bessel operator Nelineinye granichnye zadachi: mezhved. sbornik nauch. tr. 1992,
4, 19-25. (in Russian)
[22] Balabushenko T.M., Ivasyshen S.D., Lavrenchuk V.P., Melnychuk L.M. The integral of solutions some
parabolic equations with Bessel operator and increasing coefficients. Nauk. Visnyk Cherniv. Univer.
2007, 336–337, 7-15. (in Ukrainian)
[23] Ivasyshen S. D., Pasichnyk H. S. On the Cauchy Problem for (2b) $\overrightarrow{2b}$-parabolic Systems with Growing Coefficients Uk. Math. J. 2000. 52, 1691–1705.
[24] Pasichnyk H. S. On the cauchy problem for dissipative $\overrightarrow{2b}$-parabolic systems. Mat. Metody Fiz.-Mech. Polya. 2004. 47, (4), 138–143. (in Ukrainian)
[25] Ivasychen S. D., Pasichnyk H. S. Cauchy problem for the Fokker-Plank-Kolmogorov equation of a multidimensional normal Markovian process J. of Math. Sci. 2011. 176(4), 505–514.
[26] Eidelman S. D., Ivasyshen S. D., Malytska H.P. The modified Levi method of construction and studå
of the fundamental solutions of the Cauchy problem for degenerate parabolic equations of Kolmogorov
type. Nonlinear boundary value problems. 1998. (8), 101–107.
[27] Ivasyshen S. D., Androsova L.N. On integral representation and initial values of solutions of certain
degenerate parabolic equations. Dokl. AN Ukr. SSR. Ser. A. 1989, (1), 16-19. (in Russian)
[28] Ivasyshen S. D., Androsova L. N. Localization principles for solutions of sonedegenerate parabolic equations. Boundary value poblems with vaious featues and degeneacies. Zb. nauk. pr. 1990, 48–61. (in
Russian)
[29] Ivasyshen S. D., Androsova L. N. Integral representation of solutions of a class of degenerate parabolic
Kolmogorov equations. Diff. Uravn. 1991, 27 (3), 479-487. (in Russian)
[30] Voznyak O. G. , Ivasyshen S. D. Fundamental solutions of the Cauchy problem for a class of parabolic
equations, and their applications. Dop. NAN Ukr. 1996, (10), 11-16. (in Ukrainian)
[31] Dron’ V. S., Ivasyshen S. D. On correct solvability of the Cauchy problem degenerate parabolic equations
of Kolmogorov type. Ukr. Mat. Visnyk. 2004, 1 (1), 61–68. (in Ukrainian)
[32] Dron’ V. S., Ivasyshen S. D. Properties of volume potentisls for degenerate $\overrightarrow{2b}$-parabolic equations of Kolmogorov type. Bukovinian. Mat. J. 2017. 5 (1-2), 80–86. (in Ukrainian)
[33] Ivasyshen S. D., Lajuk V. V. The Cauchy problem for some degenerate parabolic equations of Kolmogorov type. Mat. Metody Fiz.-Mech. Polya. 2007, 50 (3), 56-–65. (in Ukrainian)
[34] Ivasyshen S. D., Lajuk V. V. Characterization solutions for some class ultraparabolic equations of
Kolmogorov type. Ukr. Mat. Visnyk. 2010. 7 (1), 1-38. (in Ukrainian)
[35] Ivasyshen S. D., Layuk V. V. Fundamental solutions of the Cauchy problem for some degenerate
parabolic equations of Kolmogorov type. Ukr. Mat. J. 2011, 63 (11), P. 1469–1500. (in Ukrainian)
[36] Ivasyshen S. D., Medynsky I.P. The classical fundamental solution of a degenerate Kolmogorov’s equation with coefficients indepedent on variables of degeneration. Bukovinian. Mat. J. 2014. 2 (2–3), 94–
106.(in Ukrainian)
[37] Ivasyshen S. D., Medynsky I.P. Classical fundamental solutions of the Cauchy problem for ultraparabolic
equations of Kolmogorov type with two groops of spartial variables. Proceedings of Institute of
Mathematics NAS of Ukraine. 2016. 13 (1), 108–155. (in Ukrainian)
[38] Ivasyshen S. D., Medynsky I.P. On applications of the Levi method in the theory of parabolic equations.
Mat. Stud. 2017. 47 (1), 33–46. https:doi.org//10.30970/ms.47.1.33-46.
[39] Ivasyshen S. D., Medyns’kyi I.P. On the classical fundamental solutions of the Cauchy problem for
ultraparabolic Kolmogorov-type equations with two groups of spatial variables. J. Math. Sci. 2018. 231
(4), 507–526. https:doi.org//10.1007/s10958-018-3830-0.
[40] Ivasyshen S. D., Medynsky I.P. Classical fundamental solutions of the Cauchy problem for ultraparabolic
Kolmogorov-type equations with two groups of spatial variables of degeneration. I. J. Math. Sci. 2020.
246 (2), 121–151. https:doi.org//10.1007/s10958-020-04726-z.
[41] Ivasyshen S. D., Medynsky I.P. Classical fundamental solutions of the Cauchy problem for ultraparabolic
Kolmogorov-type equations with two groups of spatial variables of degeneration. II. J. Math. Sci. 2020.
247 (1), 1–23. https:doi.org//10.1007/s10958-020-04786-1.
[42] Voznyak O., Ivasyshen S., Medynsky I. Fundamental solution of the Cauchy problem for ultraparabolic
kolmogorov-type equations with three groups of spatial variables and with degeneration on the
initial hyperplane. Visnyk of the Lviv university. Ser. mechan. and math. 2019. 88, 107–
127. https://dx.doi.org/10.30570/vmm.2019.88.107-127. (in Ukrainian)
[43] Ivasyshen S. D., Pasichnyk H. S. Fundamental solution of the Cauchy problem for for paraboic equation
with growing lowest coefficients Proceedings of Institute of Mathematics NAS of Ukraine. 2014. 11
(2),126–153. (in Ukrainian)
[44] Ivasyshen S., Pasichnyk H. The Cauchy problem for paraboic equation with growing lowest coefficients
Math. Bulletin of the Shevchenko scientific society. 2014. 11, 73–87. (in Ukrainian)
[45] Ivasyshen S. D., Pasichnyk H. S. Integral representation of solutions for paraboic equation with growing
lowest coefficients. Proceedings of Institute of Mathematics NAS of Ukraine. 2015. 12 (2), 205–229. (in
Ukrainian)
[46] Ivasyshen S. D., Pasichnyk H. S. Ultraparabolic Equations with Infinitely Increasing Coefficients in the
Group of Lowest Terms and Degenerations in the Initial Hyperplane J. Math. Sci. 2020. 249 (3),
333-354. doi:https://doi.org/10.1007/s10958-02-04946-3
[47] Eidelman S. D., Ivasyshen S. D. On fundamental solutions of the Cauchy problem for one new a class
of pseudo-differential equations. Dop. NAN Ukr. 1997. (6), 18–23. (in Ukrainian)
[48] Ivasyshen S. D., Litovchenko V. A. Cauchy problem for one class of degenerate Kolmogorov-type
parabolic equations with positive genus. Ukr. Mat. Zh. 2009. 61 (8), 1066-1087. (in Ukrainian)
[49] Ivasyshen S. D., Litovchenko V. A. Cauchy problem for a class of degenerate kolmogorov-type parabolic
equations with nonpositive genus. Ukr. Mat. Zh. 2010.62 (10), 1330–1350. (in Ukrainian)
[50] Ivasyshen S. D., Ivasyuk H.P. Initial value problems for Solonnikov–Eidelman parabolic systems. Dop.
NAN. Ukr. 2007, (9), 7-11. (in Ukrainian)
[51] Ivasyshen S. D., Lavrenchuk V.P. On correct solvability general boundary problems for parabolic system
with increasing coefficients. Ukr. Mat. Zh. 1978. 30 (1), 100–106. (in Russian)
[52] Drin’ M. M., Ivasyshen S. D. The Green’s matrix of the general boundary value problem for a Petrovsky
parabolic systems with increasing discontinuous coefficients. Dop. AN Ukr. SSR. Ser. A. 1984. (11),
7–10. (in Ukrainian)
[53] Ivasyshen S. D., Kondur O. S. On the Green matrix of the Cauchy problem and the characterization
of certain classes of solutions for $\overrightarrow{2b}$-parabolic systems of an arbitrary order Mat. Stud. 2000, 14 (1), 73-84. (in Ukrainian)
[54] Turchyna N. I., Ivasyshen S. D. About model boundary value problem with vector parabolic weight.
Bukovinian. Math. J. 2017. 5 (3–4), 163–167. (in Ukrainian)
[55] Ivasyshen S. D., Turchyna N. I. Green‘s matrix for model boundary value problem with vector parabolic
weight. Mat. Metodi Fiz.-Mekh. Polya 2017, 60 (4), 25-39. (in Ukrainian)
[56] Ivasyshen S. D., Medyns’kyi I.P., Pasichnyk H. S. Parabolic Equations with degenerations on initial
hyperplane Bukovinian. Math. J. 2016. 4 (3–4), 57–68. (in Ukrainian)
[57] Ivasyshen S. D., Medynsky I.P., Pasichnyk H. S. Parabolic equations with different singularities and
degenerations. Neclas. zadachi teorii dyf. rivnian. Proceedings of Institute of Applied of Mechfnics and
Mathematics them Ya. S. Pidstyhach NAS of Ukraine., 2017, 68–76. (in Ukrainian)
- ACS Style
- Мединський , І.П.; Пасічник , Г.С. Івасишен Степан Дмитрович: життєвий і творчий шлях. Буковинський математичний журнал. 2023, 10 https://doi.org/https://doi.org/10.31861/bmj2022.02.01
- AMA Style
- Мединський ІП, Пасічник ГС. Івасишен Степан Дмитрович: життєвий і творчий шлях. Буковинський математичний журнал. 2023; 10(2). https://doi.org/https://doi.org/10.31861/bmj2022.02.01
- Chicago/Turabian Style
- Ігор Павлович Мединський , Галина Савеліївна Пасічник . 2023. "Івасишен Степан Дмитрович: життєвий і творчий шлях". Буковинський математичний журнал. 10 вип. 2. https://doi.org/https://doi.org/10.31861/bmj2022.02.01