For a non-negative nondecreasing unbounded continuous on the right function $F$ and a real-valued function $f$ on $(1,+\|)$ the integral $I(\s)=\int_{1}^{\|}f(x)e^{x\s}dF(x)$ is called the Laplace-Stieltjes integral. For some class of such integrals three various topologies are introduced and their equivalence is proven.
[1] Sheremeta M.M. Asymptotical behaviour of Laplace-Stieltjes integral., VNTL Publishers, Lviv, 2010.
[2] Sheremeta M.M., Dobushovskyy M.S., Kuryliak A.O. On a Banach space of Laplace-Stieltjes integrals. Mat. Stud., 2017, 2 (48), 143-149pp., doi: 10.15330/ms.48.2.143-149.
[3] Kuryliak A.O., Sheremeta M.M. On a Banach space and Frechet spaces of Laplace-Stieltjes integrals. Nonlinear Oscilations, 2021, 24 (2), 188-196pp.
[4] Rudin W. Functional analysis. Tata McGraw-Hill, New Delhi, 1973.
[5] Maddox I.J. Elements of functional analysis. Cambridge University Press, 1988.
[6] Husain T. The opening mapping and closed graph theorems in topological vector spaces. Clarendon Press, Oxford, 1965.
- ACS Style
- Sheremeta, M.; Dobushovskyy , M.S. Equivalence of three topologies in the spaces of Laplace-Stieltjes integrals. Bukovinian Mathematical Journal. 2025, 13
- AMA Style
- Sheremeta M, Dobushovskyy MS. Equivalence of three topologies in the spaces of Laplace-Stieltjes integrals. Bukovinian Mathematical Journal. 2025; 13(1).
- Chicago/Turabian Style
- Myroslav Sheremeta, M. S. Dobushovskyy . 2025. "Equivalence of three topologies in the spaces of Laplace-Stieltjes integrals". Bukovinian Mathematical Journal. 13 no. 1.