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EQUIVALENCE OF THREE TOPOLOGIES IN THE SPACES OF
LAPLACE-STIELTJES INTEGRALS

For a non-negative nondecreasing unbounded continuous on the right function F and a
real-valued function f on (1,400) the integral I(c) = [ f(z)e®*dF(z) is called the Laplace-
Stieltjes integral. For some class of such integrals three various topologies are introduced and
their equivalence is proven.
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INTRODUCTION

Let V be a class of a non-negative nondecreasing unbounded continuous on the right
functions F on (1,400). We assume that a real-valued function f on (1,+00) is such that
the Lebesque-Stieltjes integral flA |f(z)|e*"dF(x) exists for every ¢ € R and A € (1, 4+00),
and the integral

I(o) = / f(@)edF(z), o €R, (1)

is called of Laplace-Stieltjes [1]. We also remark that the Dirichlet series I(c) = > a,e*?,
n=1

1 < A, 1 o0, can be rewritten in the form (1) with f(z) = a, for z = X\, and f(z) = 0 for
x # N\, and F(x) = n(x), where n(x) is a counting function of (\,).
Let

M(o) = M(o,1) = / f(z)]e®dF(z), o€R. 2)

It is clear, that if f(z) > 0 for all # > 0 then M (o,I) = I(0), and asymptotic properties
of integrals of such kind are studied in a monograph [1]. As in [1, p.21] we say that a
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function |f| has regular variation in regard to F' € V' if there exist a € [0,1), b € [0,1) and
h € (0,+00) > 0 such that for all x > a

x-+b

/mmwmzmmw (3)

By o we denote an abscissa of the convergence of integral (2), i. e. integral (2) converges
for o < o) and diverges for o > o). If integral (2) converges for all o € R then we put
oy = +oo. It is known [1, p. 21] that if In F(x) = o(x) as  — +oo and |f| has regular
variation in regard to F' € V then o); = +o0 if and only if

= In !

r o |f(@)
i. e |f(x)] < e &% for every K > 0 and all x > x¢(K). Therefore, in [2] and [3]
for a positive continuous on [0,+00) function h increases to +oo. By LS, we denote
a class of integrals I such that |f(z)|exp{zh(z)} — 0 as © — +oo and define ||I||, =
sup{|f(x)|exp{zh(z)} : x > 0}. For example, it is proven [3] that if F' € V and In F(x) =
o(x) as x — +oo then (LS, || - ||») is a non-uniformly convex Banach space.

— 400, T — 400, (4)

In this article we will consider slightly different spaces of integrals (1).

1 VARIOUS TOPOLOGIES ON LS(U(F))

For a fixed function F' € V' by U(F') we denote a class of real function on [1, +00) such
that for every fi € U(F) and f, € U(F) the functions |fi|, | f2| and | fi — f2| have the regular
variation in regard to F', and by LS(U(F')) we denote a set of integrals (1) with f € U(F)
and oy = +00.

At first we assume that (ry) is a non-decreasing sequence of positive numbers, r, — +00

with k. If for each I € LS(U(F))

il = [ Vf@)ledF (@) )

then ||I||,, exists for each k and it is easily seen that this is a norm on LS(U(F)). It is clear
that ||1]],, < ||l for all & > 1. With these countable norms ||I||,, (k > 1) we define (see
[4, p.37]) a metric topology on I € LS(U(F)) with metric d:

1 L - Dl
A, L) =S — L, I e LS(F(U)). 6
Since ||I||,, < |/I||;,,, for all k& > 1, it is clear that the metric topology defined by d is the
sup topology which is locally convex (see [4, p. 33-37]).

We remark that there exist integrals (1) such that M(o,I) = 0 and f(x) # 0. Indeed,

these is for example if for all n € N

0,1 <z <2, an, >0,z =2n—1,
n,2n <z <2n+1) 0, z#2n—1
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However the integral M(o,I) € LS(U(F)) is the additive zero of LS(U(F')) if and only if
|f(z)| = 0 for each > 1. Indeed, from the regular variation in regard to F' we have for
o =0 and each x > 1 (see (3))

z+b

M(o,1) /|f )|dF (x /|f JldF(t) > Bl f(z)],

i. e. f(x) =0 for each z > 1.
Now for each I € LS(U(F)) let

p(I) = Sup |f ()| (7)
and
Ml = sup 17 ®)

where (g;) is a non-decreasing sequence of positive numbers, 1 < ¢; — +oo with j. As (7) is
defined by the condition (4). Then the functions p(f) and ||I||,, are paranorms on LS(U(F"))
(see |5, p.85]).

We define metric topologies on LS(U(F')) with the metrics

p(ly, Is) = sup |fi(x) = fo(2)|V*, 11, I € LS(U(F)),

and
x

1 || = L,
s(hy, L) =Y 111 ~ Llly . L, L e LS(U(F)).
J

— 271+ |1y — L1l|q,
Since [|1]]g; < [|1]lg,.,, the topology s is the sup topology which is locally convex.
Theorem 1. If .
/ e AR (z) = 0, t— +oo, ()
1

then the three topologies represented by d, p and s are equivalent.

Proof. First we show that the topologies given by d and p are equivalent. Let I,,, € LS(U(F))
and I, —» I € LS(U(F)) as m — oo in the paranorm p.

Then if
/fm :EodF /f madF

we have |f,,(z) — f(x)| < (1/c)* for an arbitrarily large ¢ > 1, all m > my(c) and all x > 1.
Therefore, due to (9) we have

o0

. /|fm (@) dP (z) < /exp{ 2(in ¢ — 1) }dF(x) — 0

1
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as ¢ — +00, i. e. I, = I as m — oo under each norm ||I||,, and I,, — I as m — oo in the
metric d.

On the other hand, suppose that I,, — I as m — oo in the metric d, that is under each
norm ||/||,,. Then for an arbitrarily large ¢ > 1, m > mg(c) and all > 1 we have in view

of (3) with |f,(x) — f(z)| instead f(x)

"> / ) — F]etdF (D) / ) — FD)dF(t) >

z+b
S / ) = FOIAF() 2 R (@) = (@) (10
) 1 1 1 o1
i e |fmlr) — f(z)] < —e @@ < — provided r, > In Thus, for all
he c* T —a

m > mg(c) all ¥ > 1 and all k > ko(c, ) we have |f,,(z) — f(z)|/* < 1/c, i.e. sup|f(x) —
z>1

f(x)|*/* — 0 as m — oo and I,,, — I in the paranorm p. Hence it follows that thgtopologies
given by d and p are equivalent.
To prove the other part of Theorem 1, let I,, — I as m — oo in the paranorm p. Then
|fm(z) — f(x)] < (1/c)* for an arbitrarily large ¢, all m > mg(c) and all > 1. Therefore,
[ = Illg, = sup [ fm(2) - f@)* < 1/e
<z<g;

and - .
L[l = 1ly,

— - < ;.—H), ¢ — 00,
DI e ey D Y rwy 7
]:1 J

Jj=1

i. e. I, = I in the paranorm s.

On the other hand, if I,,, — I in the paranorm s then ||/, — I|, — 0 as m — oo for each
qj and, thus, |f,,(z) — f(z)|*/* < 1/c for an arbitrarily large ¢, all m > mq(c), all z € (1, g¢;]
and all g;, that is for all # > 1. Hence |f,,(z) — f(x)[*/* — 0 as m — oo for all x > 1 and,
therefore, I,,, — I in the paranorm p. Thus, the topologies given by p and s are equivalent.
Theorem 1 is proved. O

The following theorem establishes a connection between the convergence under p(/) and
the convergence on every finite interval.

Theorem 2. If F satisfies (9) and a sequence (1,,) C LS(U(F')) converges to I € LS(U(F))
under p(I) then I,, — I uniformly converges on every finite interval.

Proof. Let p(I,, — I) — 0 as m — oo. Then for a given € > 0, there exists an mg = myg(e)
such that |f,(z) — f(z)| < &® for m > my, or |fi(z) — f(z)] < 7™, where n € N is
arbitrarily large. Therefore, for m > mg and o € [0y, 03] due to (9) we have
o0
|1 (0) — I(0)| < / "2 MR (z) — 0, n — oo.
1
Theorem 2 is proved. O
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Remark 1. An opposite statement to Theorem 2 does not hold. Indeed, let for every
m € Zy andn € N

0,1 <z <2, O >0, 2 =2n —1,
n,2n <x <2n+1) 0, x#2n—1

Then for all m € Z,
Im(g) = /fm(l')6$0'dF(fL’) = me(Qn)BQna _ O,
0 n

i. e. Ih(0) = Ip(o) for all o € [0y, 09). On the other hand,
P(In, Io) = sup {| fn(z) = fo(x)[V*: 2> 1} >

> | fm(3) — f0(3)’1/3 = |am3 — 040,3’1/3 >hy >0

provided o, 3 — a3 > 11 > 0 for all m € N.

2 COMPLETENESS.

Now we will show the completeness of the space LS(U(F')) under various topologies
established above. Note that it is sufficient to establish the completeness under one of them,
due to Theorem 1.

Theorem 3. If F' satiesfies (10) then the space (LS(U(F)), s) is complete.

Proof. Let (I,) be a s-Cauchy sequence on LS(U(F)). Then for a given ¢ € (0, 1) there
exists a Q = Q(¢) such that for all v > @ and n > @

ii H]V_]anj e
Y 1+||L — Ly,

whence
fo(@) = fal@)V" <er, v>Qn>Q 1<z <q,

where €; = £1(¢) — 0 as ¢ — 0. Hence the sequence (f,) in p tends to f(z) for each z > 1.

Since —In — +00 as & — +00, we have f,(z) < ef for x > x¢(e1) and, therefore,

v | fu(2)]
[f (@) < [fulx) = f@)| + flo(@)] < 26T, @ = zo(en).

Thus, (4) holds for f and I*(o) = [|f(x)|e**dF(x) has the abscissa of the convergence
oy = +00. !
Since all f, € U, the function f € U. Indeed, if |f| does not have a regular variation in
regard to F' € V then for all a > 0, all b > 0 and all A~ > 0 there exists x* > 1+ a such that
z*+b
[ 1101aFe <) (1)

r*—a
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Clearly, | f(z*)| > 0 and, therefore, f,(z*) > 0 for v > 1. Since f, has regular variation in
regard to ' € V, there exist a € [0,1), b € [0,1) and hy > 0 such that

z*+b

[ 15400dE® = g o). (12

But f,(z*) — f(2*) as v — 0o. Therefore, from (11) and (12) we obtain for v — oo

r*+b

Wl + o) = il < [ If0lare)

_ / [FOIAF(#) + o(1) < hlf(27)] + o(1).

T*—a

This is impossible of the arbitrariness of h. Thus, I € LS(U(F)).
Finally,

I =1l = swp @)= f(o)] <<

<z<q;
for all v > (). Hence

o

1 [l — 1l 3
IIMI = Yl ” ’ > ’
s(L, 1) Z2ﬂl+|\],,—Iqu<1+a =0

Jj=1

i. e. (LS(U(F)),s) is complete. Theorem 3 is proved. O

Corollary 1. If F' satisfies (9) then the spaces (LS(U(F)),s), (LS(U(F)),p), (LS(U(F)),d)
and the space LS(U(F')) endowed with the compact open topology (as in Theorem 2) are
Frechet spaces and, thus, are barrelled spaces.

Theorem 4. If F satiesfies (9) then the space (LS(U(F)),p) is a Montel space (see [6,
p-32).

Proof. Let X be an arbitrary uniformly bounded subset of (LS(U(F)),p), i. e. there exists
C € (1,+00) such that p(I) < C for all I € X. For I € X as from (7) we have |f(x)] < C*
for all > 1 and, as above, |f(z)| < e for each n > 1 and all x > xy = x¢(n). Therefore,
for o € D := [0y, 03] we have

“+o00

Il [alf@lemar@ < | [+ [ ] e <

1

xo oo
< max{C%e®2tD . 1 <z < xo}/dF(x) +/e_("_"2_1)xdF(a:).
1

o
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Hence from the arbitrariness of n and (9) we have |I'(0)| < Cp forall I € X and o € D,
where Cp is a constant depending on D, and for o’,0” € D, ¢’ < ¢”, we obtain for some
5 6 [O_l7 0_//]

+oo
10"~ 1) = [ alf@)leir (@) < Cp(e” - o)
1
for all I € X, i. e. X is equi-continuos. Now by a well-known argument we can select a
subsequence of X which converges uniformly on D to a function I.From the arbitrariness of
D and the completeness of (LS(U(F')),p) Theorem 4 is proved. O
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Jlyist HeBi'€MHOT, HecIaHOl, HeOOMEXKEHOI clpaBa, HerepepBHOI GyHKIT F Ta JilicHO3HA-
. .o . . . o0 TOo .
anoi dyukuii f, samanol ma (1,+00), inrerpan I(o) = [ f(x)e*”dF(r) nasuBaerncs inTe-
rpajsiom Jlammaca-Crinreeca. [liist meBHOTO Kitacy TaKWX iHTErpaJiiB BBEJIEHO TPU TOMOJIOTIT Ta

JIOBE/IEHO 1XHIO €KBiBAJIEHTHICTD.



