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EQUIVALENCE OF THREE TOPOLOGIES IN THE SPACES OF

LAPLACE-STIELTJES INTEGRALS

For a non-negative nondecreasing unbounded continuous on the right function F and a
real-valued function f on (1,+∞) the integral I(σ) =

∫∞
1

f(x)exσdF (x) is called the Laplace-
Stieltjes integral. For some class of such integrals three various topologies are introduced and
their equivalence is proven.
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Introduction

Let V be a class of a non-negative nondecreasing unbounded continuous on the right
functions F on (1,+∞). We assume that a real-valued function f on (1,+∞) is such that
the Lebesque-Stieltjes integral

∫ A

1
|f(x)|exσdF (x) exists for every σ ∈ R and A ∈ (1,+∞),

and the integral

I(σ) =

∞∫
1

f(x)exσdF (x), σ ∈ R, (1)

is called of Laplace-Stieltjes [1]. We also remark that the Dirichlet series I(σ) =
∞∑
n=1

ane
λnσ,

1 < λn ↑ ∞, can be rewritten in the form (1) with f(x) = an for x = λn and f(x) = 0 for
x ̸= λn and F (x) = n(x), where n(x) is a counting function of (λn).

Let

M(σ) = M(σ, I) =

∞∫
1

|f(x)|exσdF (x), σ ∈ R. (2)

It is clear, that if f(x) ≥ 0 for all x ≥ 0 then M(σ, I) = I(σ), and asymptotic properties
of integrals of such kind are studied in a monograph [1]. As in [1, p.21] we say that a
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function |f | has regular variation in regard to F ∈ V if there exist a ∈ [0, 1), b ∈ [0, 1) and
h ∈ (0,+∞) > 0 such that for all x > a

x+b∫
x−a

|f(t)|dF (t) ≥ h|f(x)|. (3)

By σM we denote an abscissa of the convergence of integral (2), i. e. integral (2) converges
for σ < σM and diverges for σ > σM . If integral (2) converges for all σ ∈ R then we put
σM = +∞. It is known [1, p. 21] that if ln F (x) = o(x) as x → +∞ and |f | has regular
variation in regard to F ∈ V then σM = +∞ if and only if

1

x
ln

1

|f(x)|
→ +∞, x → +∞, (4)

i. e. |f(x)| ≤ e−Kx for every K > 0 and all x ≥ x0(K). Therefore, in [2] and [3]
for a positive continuous on [0,+∞) function h increases to +∞. By LSh we denote
a class of integrals I such that |f(x)| exp{xh(x)} → 0 as x → +∞ and define ||I||h =

sup {|f(x)| exp{xh(x)} : x ≥ 0}. For example, it is proven [3] that if F ∈ V and ln F (x) =

o(x) as x → +∞ then (LSh, || · ||h) is a non-uniformly convex Banach space.
In this article we will consider slightly different spaces of integrals (1).

1 Various topologies on LS(U(F ))

For a fixed function F ∈ V by U(F ) we denote a class of real function on [1, +∞) such
that for every f1 ∈ U(F ) and f2 ∈ U(F ) the functions |f1|, |f2| and |f1−f2| have the regular
variation in regard to F , and by LS(U(F )) we denote a set of integrals (1) with f ∈ U(F )

and σM = +∞.
At first we assume that (rk) is a non-decreasing sequence of positive numbers, rk → +∞

with k. If for each I ∈ LS(U(F ))

||I||rk =

∞∫
1

|f(x)|exrkdF (x) (5)

then ||I||rk exists for each k and it is easily seen that this is a norm on LS(U(F )). It is clear
that ||I||rk ≤ ||I||rk+1

for all k ≥ 1. With these countable norms ||I||rk (k ≥ 1) we define (see
[4, p.37]) a metric topology on I ∈ LS(U(F )) with metric d:

d(I1, I2) =
∞∑
k=1

1

2k
||I1 − I2||rk

1 + ||I1 − I2||rk
, I1, I2 ∈ LS(F (U)). (6)

Since ||I||rk ≤ ||I||rk+1
for all k ≥ 1, it is clear that the metric topology defined by d is the

sup topology which is locally convex (see [4, p. 33-37]).
We remark that there exist integrals (1) such that M(σ, I) ≡ 0 and f(x) ̸≡ 0. Indeed,

these is for example if for all n ∈ N

F (x) =

{
0, 1 ≤ x < 2,

n, 2n ≤ x < 2(n+ 1)
, f(x) =

{
αn > 0, x = 2n− 1,

0, x ̸= 2n− 1
.
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However the integral M(σ, I) ∈ LS(U(F )) is the additive zero of LS(U(F )) if and only if
|f(x)| = 0 for each x > 1. Indeed, from the regular variation in regard to F we have for
σ = 0 and each x > 1 (see (3))

0 = M(σ, I) =

∞∫
1

|f(x)|dF (x) ≥
x+b∫

x−a

|f(t)|dF (t) ≥ h|f(x)|,

i. e. f(x) = 0 for each x > 1.
Now for each I ∈ LS(U(F )) let

p(I) = sup
x>1

|f(x)|1/x (7)

and
||I||qj = sup

1≤x≤qj

|f(x)|1/x, (8)

where (qj) is a non-decreasing sequence of positive numbers, 1 < qj → +∞ with j. As (7) is
defined by the condition (4). Then the functions p(f) and ||I||qj are paranorms on LS(U(F ))

(see [5, p.85]).
We define metric topologies on LS(U(F )) with the metrics

p(I1, I2) = sup
x>1

|f1(x)− f2(x)|1/x, I1, I2 ∈ LS(U(F )),

and

s(I1, I2) =
∞∑
j=1

1

2j
||I1 − I2||qj

1 + ||I1 − I2||qj
, I1, I2 ∈ LS(U(F )).

Since ||I||qj ≤ ||I||qj+1
, the topology s is the sup topology which is locally convex.

Theorem 1. If
∞∫
1

e−txdF (x) → 0, t → +∞, (9)

then the three topologies represented by d, p and s are equivalent.

Proof. First we show that the topologies given by d and p are equivalent. Let Im ∈ LS(U(F ))

and Im → I ∈ LS(U(F )) as m → ∞ in the paranorm p.
Then if

Im(σ) =

∞∫
1

fm(x)e
xσdF (x), I(σ) =

∞∫
1

f(x)exσdF (x),

we have |fm(x)− f(x)| ≤ (1/c)x for an arbitrarily large c > 1, all m ≥ m0(c) and all x > 1.
Therefore, due to (9) we have

||Im − I||rk =

∞∫
1

|fm(x)− f(x)|exrkdF (x) ≤
∞∫
1

exp{−x(ln c− rk)}dF (x) → 0
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as c → +∞, i. e. Im → I as m → ∞ under each norm ||I||rk and Im → I as m → ∞ in the
metric d.

On the other hand, suppose that Im → I as m → ∞ in the metric d, that is under each
norm ||I||rk . Then for an arbitrarily large c > 1, m ≥ m0(c) and all x > 1 we have in view
of (3) with |fm(x)− f(x)| instead f(x)

1

c
>

+∞∫
1

|fm(t)− f(t)|etrkdF (t) ≥
x+b∫

x−a

|fm(t)− f(t)|etrkdF (t) ≥

≥ e(x−a)rk

x+b∫
x−a

|fm(t)− f(t)|dF (t) ≥ he(x−a)rk |fm(x)− f(x)|, (10)

i. e. |fm(x) − f(x)| <
1

hc
e−(x−a)rk ≤ 1

cx
, provided rk ≥ 1

x− a
ln

cx−1

h
. Thus, for all

m ≥ m0(c) all x > 1 and all k ≥ k0(c, x) we have |fm(x)− f(x)|1/x < 1/c, i.e. sup
x≥1

|fm(x)−

f(x)|1/x → 0 as m → ∞ and Im → I in the paranorm p. Hence it follows that the topologies
given by d and p are equivalent.

To prove the other part of Theorem 1, let Im → I as m → ∞ in the paranorm p. Then
|fm(x)− f(x)| ≤ (1/c)x for an arbitrarily large c, all m ≥ m0(c) and all x > 1. Therefore,

||Im − I||qj = sup
1≤x≤qj

|fm(x)− f(x)|1/x ≤ 1/c

and
∞∑
j=1

1

2j
||Im − I||qj

1 + ||Im − I||qj
≤

∞∑
j=1

1

(c+ 1)2j
→ 0, c → ∞,

i. e. Im → I in the paranorm s.
On the other hand, if Im → I in the paranorm s then ||Im−I||qj → 0 as m → ∞ for each

qj and, thus, |fm(x)− f(x)|1/x ≤ 1/c for an arbitrarily large c, all m ≥ m0(c), all x ∈ (1, qj]

and all qj, that is for all x > 1. Hence |fm(x)− f(x)|1/x → 0 as m → ∞ for all x > 1 and,
therefore, Im → I in the paranorm p. Thus, the topologies given by p and s are equivalent.
Theorem 1 is proved.

The following theorem establishes a connection between the convergence under p(I) and
the convergence on every finite interval.

Theorem 2. If F satisfies (9) and a sequence (Im) ⊂ LS(U(F )) converges to I ∈ LS(U(F ))

under p(I) then Im → I uniformly converges on every finite interval.

Proof. Let p(Im − I) → 0 as m → ∞. Then for a given ε > 0, there exists an m0 = m0(ε)

such that |fm(x) − f(x)| ≤ εx for m ≥ m0, or |fm(x) − f(x)| ≤ ε−nx, where n ∈ N is
arbitrarily large. Therefore, for m ≥ m0 and σ ∈ [σ1, σ2] due to (9) we have

|Im(σ)− I(σ)| <
+∞∫
1

ex(σ2−n)dF (x) → 0, n → ∞.

Theorem 2 is proved.
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Remark 1. An opposite statement to Theorem 2 does not hold. Indeed, let for every
m ∈ Z+ and n ∈ N

F (x) =

{
0, 1 ≤ x < 2,

n, 2n ≤ x < 2(n+ 1)
, fm(x) =

{
αm,n > 0, x = 2n− 1,

0, x ̸= 2n− 1
.

Then for all m ∈ Z+

Im(σ) =

∞∫
0

fm(x)e
xσdF (x) =

∑
n

fm(2n)e
2nσ = 0,

i. e. Im(σ) → I0(σ) for all σ ∈ [σ1, σ2]. On the other hand,

p(Im, I0) = sup
{
|fm(x)− f0(x)|1/x : x > 1

}
≥

≥ |fm(3)− f0(3)|1/3 = |αm,3 − α0,3|1/3 ≥ h1 > 0

provided αm,3 − α0,3 ≥ η1 > 0 for all m ∈ N.

2 Completeness.

Now we will show the completeness of the space LS(U(F )) under various topologies
established above. Note that it is sufficient to establish the completeness under one of them,
due to Theorem 1.

Theorem 3. If F satiesfies (10) then the space (LS(U(F )), s) is complete.

Proof. Let (Iν) be a s-Cauchy sequence on LS(U(F )). Then for a given ε ∈ (0, 1) there
exists a Q = Q(ε) such that for all ν ≥ Q and n ≥ Q

∞∑
j=1

1

2j
||Iν − In||qj

1 + ||Iν − In||qj
< ε,

whence
|fν(x)− fn(x)|1/x < ε1, ν ≥ Q, n ≥ Q, 1 ≤ x ≤ qj,

where ε1 = ε1(ε) → 0 as ε → 0. Hence the sequence (fν) in p tends to f(x) for each x > 1.

Since
1

x
ln

1

|fν(x)|
→ +∞ as x → +∞, we have fν(x) ≤ εx1 for x ≥ x0(ε1) and, therefore,

|f(x)| ≤ |fν(x)− f(x)|+ f |ν(x)| ≤ 2εx1 , x ≥ x0(ε1).

Thus, (4) holds for f and I∗(σ) =
∞∫
1

|f(x)|exσdF (x) has the abscissa of the convergence

σM = +∞.
Since all fν ∈ U , the function f ∈ U . Indeed, if |f | does not have a regular variation in

regard to F ∈ V then for all a ≥ 0, all b ≥ 0 and all h > 0 there exists x∗ > 1 + a such that
x∗+b∫

x∗−a

|f(t)|dF (t) < h|f(x∗)|. (11)
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Clearly, |f(x∗)| > 0 and, therefore, fν(x∗) > 0 for ν ≥ ν0. Since fν has regular variation in
regard to F ∈ V , there exist a ∈ [0, 1), b ∈ [0, 1) and h1 > 0 such that

x∗+b∫
x∗−a

|fν(t)|dF (t) ≥ h1|fν(x∗)|. (12)

But fν(x
∗) → f(x∗) as ν → ∞. Therefore, from (11) and (12) we obtain for ν → ∞

h1|f(x∗)|+ o(1) = h1|fν(x∗)| ≤
x∗+b∫

x∗−a

|fν(t)|dF (t)

=

x∗+b∫
x∗−a

|f(t)|dF (t) + o(1) < h|f(x∗)|+ o(1).

This is impossible of the arbitrariness of h. Thus, I ∈ LS(U(F )).
Finally,

||Iν − I||qj = sup
1<x≤qj

|fν(x)− f(x)|1/x < ε

for all ν ≥ Q. Hence

s(Iν , I) =
∞∑
j=1

1

2j
||Iν − I||qj

1 + ||Iν − I||qj
<

ε

1 + ε
, ν ≥ Q,

i. e. (LS(U(F )), s) is complete. Theorem 3 is proved.

Corollary 1. If F satisfies (9) then the spaces (LS(U(F )), s), (LS(U(F )), p), (LS(U(F )), d)

and the space LS(U(F )) endowed with the compact open topology (as in Theorem 2) are
Frechet spaces and, thus, are barrelled spaces.

Theorem 4. If F satiesfies (9) then the space (LS(U(F )), p) is a Montel space (see [6,
p.32]).

Proof. Let X be an arbitrary uniformly bounded subset of (LS(U(F )), p), i. e. there exists
C ∈ (1,+∞) such that p(I) ≤ C for all I ∈ X. For I ∈ X as from (7) we have |f(x)| ≤ Cx

for all x > 1 and, as above, |f(x)| ≤ e−nx for each n > 1 and all x ≥ x0 = x0(n). Therefore,
for σ ∈ D := [σ1, σ2] we have

|I ′(σ)| ≤
+∞∫
1

x|f(x)|exσ2dF (x) ≤

 x0∫
1

+

∞∫
x0

 |f(x)|ex(σ2+1)dF (x) ≤

≤ max{Cxex(σ2+1) : 1 ≤ x ≤ x0}
x0∫
1

dF (x) +

∞∫
x0

e−(n−σ2−1)xdF (x).
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Hence from the arbitrariness of n and (9) we have |I ′(σ)| ≤ CD for all I ∈ X and σ ∈ D,
where CD is a constant depending on D, and for σ′, σ′′ ∈ D, σ′ < σ′′, we obtain for some
ξ ∈ [σ′, σ′′]

|I(σ′′)− I(σ′)| =
+∞∫
1

x|f(x)|exξdF (x) ≤ C∗
D(σ

′′ − σ′)

for all I ∈ X, i. e. X is equi-continuos. Now by a well-known argument we can select a
subsequence of X which converges uniformly on D to a function I.From the arbitrariness of
D and the completeness of (LS(U(F )), p) Theorem 4 is proved.
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Для невiд’ємної, неспадної, необмеженої cправа, неперервної функцiї F та дiйснозна-
чної функцiї f , заданої на (1,+∞), iнтеграл I(σ) =

∫∞
1

f(x)exσdF (x) називається iнте-
гралом Лапласа-Стiлтьєса. Для певного класу таких iнтегралiв введено три топологiї та
доведено їхню еквiвалентнiсть.


