Перейти до основного вмісту
On locally compact shift-continuous topologies on semigroups c+(a, b) and c−(a, b) with adjoined zero
Gutik Oleg Volodymyrovych 1
1 Department of Algebra, Topology and Fundamentals of Mathematics, Lviv Ivan Franko National University, Lviv, 79000, Ukraine
Keywords: semitopological semigroup, topological semigroup, left topological semigroup, locally compact
Abstract

In [15], Macanuola and Umar studied the algebraic properties of the upper C+(a; b) =
{qipj ∈ C (p; q): i 6 j} and lower C−(a; b) = {qipj ∈ C (p; q): i > j} semigroups of the bicyclic monoid C (a; b).Let C+(p; q)0 and C−(p; q)0 be the semigroups C+(a; b) and C−(a; b) with an associated zero. It is known [7] that on a bicyclic semigroup with an associated zero C (p; q)0, every Hausdorff locally compact translationally continuous topology is either compact or discrete.This paper describes all locally compact translationally continuous Hausdorff topologies on the additive semigroup of nonnegative integers with associated zero (!; +)0 and on the semigroups C+(p; q)0 and C−(p; q)0. In particular, it is proved that on the semigroups C+(p; q)0 and C−(p; q)0 there exists a continuum of various Hausdorff locally compact translationally continuous topologies up to topological isomorphism, and there are exactly three such topologies on the semigroups C+(p; q)0 and C−(p; q)0 up to homeomorphism.

References

[1] Bardyla S. Classifying locally compact semitopological polycyclic monoids. Mat. Visn. Nauk. Tov. Im. Shevchenka 2016, 13, 21–28.
[2] Bardyla S. On locally compact semitopological graph inverse semigroups. Mat. Stud. 2018, 49 (1), 19–28. doi: 10.15330/ms.49.1.19-28
[3] Bardyla S. On topological McAlister semigroups, J. Pure Appl. Algebra 2023, 227 (4), 107274. doi: 10.1016/j.jpaa.2022.107274
[4] Carruth J.H., Hildebrant J.A., Koch R.J. The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
[5] Clifford A.H., Preston G.B. The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
[6] Engelking R. General topology, 2nd ed., Heldermann, Berlin, 1989.
[7] Gutik O. On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visnyk L’viv Univ., Ser. Mech.-Math. 2015, 80, 33–41.
[8] Gutik O. On non-topologizable semigroups, Preprint (arXiv: 2405.16992).
[9] Gutik O., Khylynskyi P. On a locally compact submonoid of the monoid cofinite partial isometries of N with adjoined zero, Topol. Algebra Appl. 2022, 10 (1), 233–245. doi: 10.1515/taa-2022-0130
[10] Gutik O.V., Khylynskyi M.B. On locally compact shift continuous topologies on the semigroup B[0;infinity) with an adjoined compact ideal, Mat. Stud. 2024, 61 (1), 10–20. doi: 10.30970/ms.61.1.10-20
[11] Gutik O.V., Maksymyk K.M. On a semitopological extended bicyclic semigroup with adjoined zero, J.Math. Sci. 2022, 265 (3), 369–381. doi: 10.1007/s10958-022-06058-6
[12] Gutik O., Mykhalenych M. On a semitopological semigroup B_w^F! when a family F consists of inductive non-empty subsets of w, Mat. Stud. 2023, 59 (1), 20–28. doi: 10.30970/ms.59.1.20-28
[13] Gutik O., Pagon D., Pavlyk K. Congruences on bicyclic extensions of a linearly ordered group, Acta Comment. Univ. Tartu. Math. 2011, 15 (2), 61–80. DOI: 10.12697/ACUTM.2011.15.10
[14] Haworth R.C., McCoy R.A. Baire spaces, Dissertationes Math., Warszawa, PWN, 1977. Vol. 141.
[15] Makanjuola S.O., Umar A. On a certain subsemigroup of the bicyclic semigroup, Commun. Algebra 1997, 25 (2), 509–519. doi: 10.1080/00927879708825870
[16] Maksymyk K. On locally compact groups with zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 88, 51–58. (in Ukrainian).
[17] Mokrytskyi T. On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of Nn with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 87, 37–45.
[18] Ruppert W. Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. doi: 10.1007/BFb0073675

Cite
ACS Style
Gutik, O.V. On locally compact shift-continuous topologies on semigroups c+(a, b) and c−(a, b) with adjoined zero. Bukovinian Mathematical Journal. 2024, 12 https://doi.org/https://doi.org/10.31861/bmj2024.01.02
AMA Style
Gutik OV. On locally compact shift-continuous topologies on semigroups c+(a, b) and c−(a, b) with adjoined zero. Bukovinian Mathematical Journal. 2024; 12(1). https://doi.org/https://doi.org/10.31861/bmj2024.01.02
Chicago/Turabian Style
Oleg Volodymyrovych Gutik. 2024. "On locally compact shift-continuous topologies on semigroups c+(a, b) and c−(a, b) with adjoined zero". Bukovinian Mathematical Journal. 12 no. 1. https://doi.org/https://doi.org/10.31861/bmj2024.01.02
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings