Перейти до основного вмісту
Integral representation of hyperbolically convex functions
Lopotko O. V. 1
1 National Forestry and Wood Technology University of Ukraine, Lviv, 79057, Ukraine
Keywords: representation, positive definite, measure, hyperbolically convex functions
Abstract

An article consists of two parts.

In the first part the sufficient and necessary conditions for an integral representation of hyperbolically convex (h.c.) functions $k(x)$ $\left(x\in \mathbb{R}^{\infty}= \mathbb{R}^1\times\mathbb{R}^1\times \dots\right)$ are proved. For this purpose in $\mathbb{R}^{\infty}$ we introduce measures $\omega_1(x)$, $\omega_{\frac{1}{2}}(x)$. The positive definiteness of a function will be understood on the integral sense with respect to the measure $\omega_1(x)$. Then we proved that the measure $\rho(\lambda)$ in the integral representation is concentrated on $l_2^+=\bigg\{\lambda \in \mathbb{R}_+^{\infty}= \mathbb{R}_+^1\times\mathbb{R}_+^1\times \dots\Big|\sum\limits_{n=1}^{\infty}\lambda_n^2<\infty\bigg\}$. The equality for $k(x)$ $\left(x\in\mathbb{R}^{\infty} \right)$ is regarded as an equality for almost all $x\in\mathbb{R}^{\infty}$ with respect to measure $\omega_{\frac{1}{2}}(x)$.

In the second part we proved the sufficient and necessary conditions for integral representation of h.c. functions $k(x)$ $\big(x\in \mathbb{R}_0^{\infty}$ $\mathrm{~is~a~nuclear~space}\big)$. The positive definiteness of a function $k(x)$ will be understood on the pointwise sense. For this purpose we shall construct a rigging (chain) $\mathbb{R}_0^{\infty}\subset l_2 \subset \mathbb{R}^{\infty}$. Then, given that the projection and inductive topologies are coinciding, we shall obtaine the integral representation for $k(x)$ $\left(x\in \mathbb{R}_0^{\infty}\right)$

References

[1] Berezansky Yu. M. Expansions in eigenfunctions of self-adjoint operators. Translations of Mathematical
Monographs Vol. 17, Providence, R.I.: Am. Math. Soc., 1968, 809 p.
[2] Berezansky Yu. M., Gali I. M. Positive definite functions of infinite many variables in a layer.
Ukr. Math. J. 1972, 24 (4), 351–372. doi:10.1007/BF01314686.
[3] Berezansky Yu. M. Self-adjoint operators in space of functions of infinitely many varibles. Kyiv, Naukova
dumka, 1978.
[4] Berezansky Yu. M., Kalyuzhny A. A. Representation of hypercomplex systems with locally compact
basis. Ukr. Math. J. 1984, 36 (4), 417–421. doi:10.1007/BF01066549.
[5] Berezansky Yu. M., Kondratiev Yu. G. Spectral methods in infinite-dimensional analysis. Kyiv,
Naukova dumka, 1988.
[6] Bogolyubov N. N., Logunov A. A., Oksak A. I., Togorov I. T. General Principles of Quantum Field
Theory. Moskov, Nauka, 1987.
[7] Lopotko O. V., Rudinski I. I. Integral representation of evenly positive-definite bounded functions of
infinite number of variables. Ukr. Math. J. 1982, 34 (3), 310–312. doi:10.1007/BF01682127.
[8] Lopotko O. V. Even positive definite bounded functions of infinitely many variables. Dokl. AN of
Ukraine, Ser. A. 1991, 8, 11–13.
[9] Lopotko O. V. The integral representation for odd positive definite functions of infinitely many variables.
Dokl. AN of Ukraine, 2006,7, 11–13.
[10] Lopotko O. V. The integral representation of positively definite kernels of finite and infinite many
variables. Ph.D. Inst. of Math. Kiev, 1992.
[11] Rudinsky I. I. The integral representation for evenly positive-definite functions on nuclear space.
Ukr. Math. J. 1984, 36 (4), 429–431. doi:10.1007/BF01066570.
[12] Halmos P. R. Measure Theory. Moskov, Publishing House of Foreign Literature, 1953.
[13] Schaefer H. Topological Vector Spaces. Moskov, Peace, 1971.

Cite
ACS Style
Lopotko , O.V. Integral representation of hyperbolically convex functions. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.01.02
AMA Style
Lopotko OV. Integral representation of hyperbolically convex functions. Bukovinian Mathematical Journal. 2023; 11(1). https://doi.org/https://doi.org/10.31861/bmj2023.01.02
Chicago/Turabian Style
O. V. Lopotko . 2023. "Integral representation of hyperbolically convex functions". Bukovinian Mathematical Journal. 11 no. 1. https://doi.org/https://doi.org/10.31861/bmj2023.01.02
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings