We consider finite class of functions defined by parameters $e_0,e_1,e_2$ belonging to the set $A=\{0,1\}$. The digits of the continued fraction $A_2$-representation of the argument $$x=\frac{1}{\alpha_1+\frac{1}{\alpha_2+_{\ddots}}}\equiv
\Delta^A_{a_1...a_n...},$$
where $\alpha_n\in \{\frac{1}{2};1\}$, $a_n=2\alpha_n-1$, $n\in N$, and the values of the function are in a recursive dependence, namely:
$$f(x=\Delta^A_{a_1...a_{2n}...})=\Delta^A_{b_1b_2...b_n...},$$
\begin{equation*}
b_1=\begin{cases}
e_0 &\mbox{ if } (a_1,a_2)=(e_1,e_2),\\
1-e_0 &\mbox{ if } (a_1,a_2)\neq(e_1,e_2),
\end{cases}
\end{equation*}
\begin{equation*}
b_{k+1}=\begin{cases}
b_k &\mbox{ if } (a_{2k+1},a_{2k+2})\neq(a_{2k-1},a_{2k}),\\
1-b_k &\mbox{ if } (a_{2k+1},a_{2k+2})=(a_{2k-1},a_{2k}).
\end{cases}
\end{equation*}
In the article, we justify the well-defined of the function, continuous and nowhere monotonic function. The variational properties of the function were studied and the unbounded variation was proved.
[1] S. O. Dmytrenko, D. V. Kyurchev, M. V. Prats’ovytyi $A_2$-continued fraction representation of real
numbers and its geometry // Ukrainian Mathematical Journal. — 2009. — №4. — P. 541-555.
https://doi.org/10.1007/s11253-009-0236-7
[2] M.V. Pratsiovytyi, Ya.V. Goncharenko, S.O. Dmytrenko, I.M. Lysenko, S.P. Ratushniak, About one
class of function with fractal properties // Bukovynian Mathematical Journal. 2021, T. 6, № 1 —
P.273–283. (in Ukrainian)
[3] Pratsiovytyi M.V., Goncharenko Ya.V., Lysenko I.M., Ratushniak S.P. Continued $A_2$-fractions and
singular functions // Mat. Stud., 58, 2022. — P.3–12.
[4] Pratsiovytyi M.V., Chuikov A.S. Continuous distributions whose functions preserve tails of A-continued
fraction representation of numbers// Random Operators and Stochastic Equations. 2019. Vol. 27 (3).
Pp. 199–206.
[5] Pratsiovytyi M.V. Two-symbol encoding systems of real numbers and their application. — Kyiv: Scientific
opinion, 2022. — 316 p. (in Ukrainian)
[6] Pratsiovytyi M.V. There are no monotonic singular functions // Scientific journal of M.P. Dragomanov
National University. Series 1. Phys.-math. of science, 2011.— №12. — P. 24–36. (in Ukrainian)
[7] Pratsiovytyi M.V. Fractal approach in the study of singular distributions. — Kyiv: M.P. Dragomanova
NPU„ 1998. — 296 p. (in Ukrainian)
[8] Pratsiovytyi M.V., Ratushniak S.P. A continuous nowhere differentiable function with fractal properties
defined in terms of $Q_2$-image // Nonlinear Oscillations, Vol.23. №2, 2020. — P.231–252. (in Ukrainian)
[9] Pratsiovytyi M.V., Chuikov A.S. A continuous nowhere non-monotonic function defined in terms of
negative-triple and chain $A_2$-fractions. Coll. Proceedings of the Institute of Mathematics of the National
Academy of Sciences of Ukraine. 2018. Vol.15, № 1. P. 147–161. (in Ukrainian)
- ACS Style
- Ratushniak, S. Continuous nowhere monotonic function defined it term continued $A_2$-fractions representation of numbers. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.01.11
- AMA Style
- Ratushniak S. Continuous nowhere monotonic function defined it term continued $A_2$-fractions representation of numbers. Bukovinian Mathematical Journal. 2023; 11(1). https://doi.org/https://doi.org/10.31861/bmj2023.01.11
- Chicago/Turabian Style
- Sofiya Ratushniak. 2023. "Continuous nowhere monotonic function defined it term continued $A_2$-fractions representation of numbers". Bukovinian Mathematical Journal. 11 no. 1. https://doi.org/https://doi.org/10.31861/bmj2023.01.11