In the space of $2π$ -periodie distributions formulated the necessary and sufficient conditions for the existence of boundary values $t → +0$ of solutions of parabolic PDS with convex symbols that are dependent on the time parameters.
[1] Gorbachuk, V.I.; Gorbachuk, M.L. Trigonometric series and generalization of pereodic ones // Dokl. of the USSR Academy of Sciences. - 1981. - Т 257, № 4. - P. 799-804.
[2] Friedman A. Equations with partial derivatives of parabolic type. - M.: Mir, 1968. - 428 p.
[3] I.M. Gelfand, G.E. Shilov. Some questions of the theory of differential equations. - M.: Fizmatgiz, 1958. - 274 p.
[4] Eidelman S.D. Parabolic systems. - M.: Nauka, 1964. - 444 р.
[5] Litovchenko V.A. Cauchy problem for one class of pseudo-differential systems in spaces of periodic functions // Ukr. mat. vestnik. - 2007. - VOL. 4, № 3, P. 394-420.
[6] Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for differential-operator equations. - Kiev: Nauk. dumka, 1984. - 283 р.
[7] Gorodetsky V.V. Sets of initial values of smooth solutions of differential-operator equations of parabolic type. - Chernivtsi: Ruta, 1998. - 219 p.
- ACS Style
- Litovchenko, V.A. One statement about the boundary values of smooth solutions of periodic parabolic PDS with convex symbols. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Litovchenko VA. One statement about the boundary values of smooth solutions of periodic parabolic PDS with convex symbols. Bukovinian Mathematical Journal. 2018; 1(4).
- Chicago/Turabian Style
- Vladyslav Antonovich Litovchenko. 2018. "One statement about the boundary values of smooth solutions of periodic parabolic PDS with convex symbols". Bukovinian Mathematical Journal. 1 no. 4.