Перейти до основного вмісту
Композицiя цiлих на зрiзках функцiй та обмежений $L$-iндекс за напрямком
Бандура Андрій Іванович 1 , Скасків Олег Богданович 2
1 Кафедра фізико-математичних наук, Івано-Франківський національний технічний університет нафти і газу, Івано-Франківськ, 76019, Україна
2 Кафедра теорії функцій і функціонального аналізу, Львівський національний університет імені Івана Франка, Львів, 79000, Україна
Ключові слова: ціла на зрізці функція, ціла функція, обмежений $L$-індекс за напрямком, складена функція, обмежений $l$-індекс
Анотація

Розглядається таке питання: "нехай $f: \mathbb{C}\to \mathbb{C}$ — ціла функція обмеженого $l$-індексу, $\Phi: \mathbb{C}^n\to \mathbb{C}$ — ціла на зрізках функція, $n\geq2,$ $l:\mathbb{C}\to \mathbb{R}_+$ — неперервна функція. Для якої додатної неперервної функції $L:\mathbb{C}^n\to \mathbb{R}_+$ та для якого напрямку $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$  складена функція $f(\Phi(z))$ має обмежений $L$-індекс за напрямком $\mathbf{b}$?". У поданій статті раніше відомі результати про обмеженість $L$-індекс за напрямком для композиції цілих функцій $f(\Phi(z))$ узагальнені на випадок, коли  $\Phi: \mathbb{C}^n\to \mathbb{C}$ — ціла на зрізках функція, себто ця функція ціла на кожній комплексній прямій $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ для будь-якого $z^0\in\mathbb{C}^n$ та заданого напрямку $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$. Такі цілі на зрізках функцій не голоморфні за сукупністю змінних у загальному випадку. Наприклад, такий підхід дозволяє розгляд функцій, голоморфних за змінною  $z_1$ і неперервних за змінноюю $z_2.$

Список використаних джерел

[1] Bandura A., Skaskiv O., Slice Holomorphic Functions in Several Variables with Bounded L-Index in Direction, Axioms, 2019, 8 (3), Article ID 88. doi: 10.3390/axioms8030088
[2] Bandura A.I., Skaskiv O.B., Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables. J. Math. Sci. 2020, 244 (1), 1-21. doi: 10.1007/s10958-
019-04600-7
[3] Bandura A. Composition of entire functions and bounded L-index in direction. Mat. Stud. 2017, 47 (2), 179–184. doi: 10.15330/ms.47.2.179-184
[4] Bandura A. I., Skaskiv O. B. Boundedness of L-index for the composition of entire functions of several variables, Ukr. Math. J. 2019, 70 (10), 1538–1549. doi: 10.1007/s11253-019-01589-9
[5] Bandura A.I. Composition, product and sum of analytic functions of bounded L-index in direction in the unit ball, Mat. Stud. 2018, 50 (2), 115–134. doi: 10.15330/ms.50.2.115-134
[6] Bandura A.I., Sheremeta M.M., Bounded l-index and l − M-index and compositions of analytic functions. Mat. Stud. 2017, 48 (2), 180-188. doi: 10.15330/ms.48.2.180-188
[7] Bandura A. I., Skaskiv O. B., Tsvigun V. L., The functions of Bounded L-Index in the Collection of Variables Analytic in D X C. J. Math. Sci., 2020, 246 (2), 256–263. doi: 10.1007/s10958-020-04735-y
[8] Bandura A., Petrechko N., Skaskiv O., Maximum modulus in a bidisc of analytic functions of bounded L-index and an analogue of Hayman’s theorem. Mat. Bohemica., 2018, 143 (4), 339–354. doi: 10.21136/MB.2017.0110-16
[9] Hayman W.K., Differential inequalities and local valency. Pacific J. Math., 1973, 44 (1), 117–137.
[10] Kuzyk A.D., Sheremeta M.N., Entire functions of bounded l-distribution of values. Math. Notes 1986, 39 (1), 3–8. doi:10.1007/BF01647624
[11] Lepson B., Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index. Proc. Sympos. Pure Math. 1968, 11, 298–307.
[12] Macdonnell J. J., Some convergence theorems for Dirichlet-type series whose coefficients are entire functions of bounded index. Doctoral dissertation, Catholic University of America, Washington, USA,
1957
[13] Nuray F., Patterson R.F., Multivalence of bivariate functions of bounded index. Le Matematiche. 2015, 70, 225–233. doi:10.4418/2015.70.2.14.
[14] Nuray F., Patterson R.F., Entire bivariate functions of exponential type. Bull. Math. Sci. 2015, 5, 171–177. doi:10.1007/s13373-015-0066-x.
[15] Nuray F. Bounded index and four dimensional summability methods. Novi Sad J. Math. 2019, 49, 73–85. doi:10.30755/NSJOM.08285
[16] Sheremeta M.N., Entire functions and Dirichlet series of bounded l-index. Russian Math. (Iz. VUZ) 1992, 36 (9), 76–82.
[17] Sheremeta M., Analytic functions of bounded index. VNTL Publishers, Lviv, 1999.

Цитувати
ACS Style
Бандура , А.І.; Скасків , О.Б. Композицiя цiлих на зрiзках функцiй та обмежений $L$-iндекс за напрямком. Буковинський математичний журнал. 2021, 9 https://doi.org/https://doi.org/10.31861/bmj2021.01.02
AMA Style
Бандура АІ, Скасків ОБ. Композицiя цiлих на зрiзках функцiй та обмежений $L$-iндекс за напрямком. Буковинський математичний журнал. 2021; 9(1). https://doi.org/https://doi.org/10.31861/bmj2021.01.02
Chicago/Turabian Style
Андрій Іванович Бандура , Олег Богданович Скасків . 2021. "Композицiя цiлих на зрiзках функцiй та обмежений $L$-iндекс за напрямком". Буковинський математичний журнал. 9 вип. 1. https://doi.org/https://doi.org/10.31861/bmj2021.01.02
Експортувати
Ми використовуємо власні та сторонні файли cookies та localStorage для аналізу веб-трафіку та поширення матеріалів. Налаштування конфіденційності