Визначено умови для того, щоб початок був центром для класу кубічних диференційованих систем, що мають дві інваріантні прямі і одну інваріантну кубічну. Доведемо, що тонкий фокус $O (0,0)$ є центром тоді і тільки тоді, коли перші дві кількості Ляпунова зникають.
[1] Amel'kin V.V., LukashevichN.A., SadovskiiA.P. Non-linear oscillations in the systems of second order. Belarusian University Press, Belarus, 1982 (in Russian).
[2] Bautin N.N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Transl.Amer.Math.Soc.1954,100(1),397-413.
[3] BondarY.L.,SadovskiiA.P.Variety of the center and limit cycles of a cubic system, which is reduced to Lienard form. Bul. Acad. Științe Repub. Moldova, Mat. 2004, 46 (3), 71-90.
[4] Chavarriga J., Giné J. Integrability of cubic systems with degenerate infinity. Differential Equations and Dynamical Systems 1998, 6 (4), 425-438.
[5] Cozma D., Șubă A. The solution of the problem of center for cubic differential systems with four invariant straight lines. Scientific Annals of the "Al.I.Cuza"University(Romania),Mathematics 1998, XLIV, (I), 517-530.
[6] Cozma D. The problem of the center for cubic systems with two parallel invariant straight lines and one invariant conic. Nonlinear Differ. Equ. and Appl. 2009, 16, 213-234.
https://doi.org/10.1007/s00030-008-7044-x
[7] Cozma D. The problem of the center for cubic systems with two parallel invariant straight lines and one invariant conic. Annals of Differential Equations 2010, 30 (4), 385-399.
[8] Cozma D. Center problem for cubic systems with a bundle of two invariant straight lines and one invariant conic. Bul. Acad. Științe Repub. Moldova, Mat. 2012, 68 (1), 32-49.
[9] Cozma D. Integrability of cubic systems with invariant straight lines and invariant conics. Chișinău, Știința, 2013.
[10] Cozma D. Darboux integrability and rational reversibility in cubic systems with two invariant straight lines. Electronic Journal of Differential Equations 2013, 2013 (23), 1-19.
[11] Cozma D. The problem of the center for cubic systems with two parallel invariant straight lines and one invariant cubic. ROMAI Journal 2015, 11 (2), 63-75.
[12] Cozma D., Dascalescu A. Center conditions for a cubic differential system with a bundle of two invariant straight lines and one invariant cubic. ROMAI Journal 2017, 13 (2), 39-54.
[13] Cozma D., Dascalescu A. Integrability conditions for a class of cubic differential systems with a bundle of two invariant straight lines and one invariant cubic. Bul. Acad. Științe Repub. Moldova, Mat. 2018, 86 (1), 120-138.
[14] Han M., Romanovski V., Zhang X. Integrability of a family of 2-dim cubic systems with degenerate infinity, Rom. Journ. Phys. 2016, 61, (1-2), 157-166.
[15] Dascalescu A. Integrability conditions for a cubic differential system with two invariant straight lines and one invariant cubic. Annals of the University of Craiova, Mathematics and Computer Science Series 2018, 45 (2), 312-322.
[16] Gine J., Llibre J., Valls C. The cubic polynomial differential systems with two circles as algebraic limit cycles. Adv. Nonlinear Stud. 2017, 18 (2), 1-11.
https://doi.org/10.1515/ans-2017-6033
[17] Lloyd N.G., Pearson J.M. A cubic differential system with nine limit cycles, Journal of Applied Analysis and Computation 2012, 2 (3), 293-304.
[18] Lloyd N.G., Pearson J.M. Centres and limit cycles for an extended Kukles system, Electronic Journal of Differential Equations 2007, 2007 (119), 1-23.
[19] Lyapunov A.M. The general problem of stability ofmotion.Gostekhizdat,Moscow,1950(inRussian).
[20] Popa M.N., Pricop V.V. Applications of algebraic methods in solving the center-focus problem. Bul. Acad.Științe Repub.Moldova,Mat.2013,71(1), 45-71.
[21] Sadovskii A.P., Shcheglova T.V. Solution of the center-focus problem for a nine-parameter cubic system. Differential Equations 2011, 47 (2), 208- 223.
https://doi.org/10.1134/S0012266111020078
[22] Schlomiuk D. Algebraic and geometric aspects of the theory of polynomial vector fields. In: Bifurcations and periodic orbits of vector fields. Kluwer Academic Publishes, 1993, 429-467.
https://doi.org/10.1007/978-94-015-8238-4_10
[23] Șubă A. Partial integrals, integrability and the center problem, Differ. Equations 1996, 32 (7), 884-892.
[24] Șubă A., Cozma D. Solution of the problem of center for cubic differential systems with three invariant straight lines in generic position.Qualitative Theory of Dynamical Systems 2005, 6 (1), 45-58.
https://doi.org/10.1007/BF02972667
[25] Zhang X. Integrability of Dynamical Systems: Algebra and Analysis. Springer Nature Singapure, Singapure, 2017.
https://doi.org/10.1007/978-981-10-4226-3_7
[26] Źolądek H. On certain generalization of the Bautin's theorem. Nonlinearity 1994, 7, 273-279.
https://doi.org/10.1088/0951-7715/7/1/013
- ACS Style
- Даскалеску, А.І. Умови центру для кубічної диференціальної системи з двими інваріантними прямими лініями і один інваріантний куб. Буковинський математичний журнал. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.053
- AMA Style
- Даскалеску АІ. Умови центру для кубічної диференціальної системи з двими інваріантними прямими лініями і один інваріантний куб. Буковинський математичний журнал. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.053
- Chicago/Turabian Style
- А. І. Даскалеску. 2019. "Умови центру для кубічної диференціальної системи з двими інваріантними прямими лініями і один інваріантний куб". Буковинський математичний журнал. 6 вип. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.053