Отримано повнi асимптотичнi розклади точних верхнiх меж вiдхилень узагальненого iнтеграла Пуассона вiд функцiй класу Гельдера в iнтегральнiй метрицi.
[1] Baskakov, V. A. (1975). Some properties of operators of Abel-Poisson type: Mathematical Notes, 17(2), 101-107. DOI: 10.1007/BF01161864
[2] Zhyhallo, K.M., Kharkevych, Yu.I. (2009). Approximation of conjugate differentiable functions by their Abel-Poisson integrals: Ukr. Math. J., 61(1), 86-98. DOI: 10.1007/s11253-009-0196-y
[3] Kaniev, S. (1963). On the evasion of biharmonic functions in a circle from their boundary values: Reports of the USSR Academy of Sciences, 153 (5), 995-998.
[4] Kharkevych, Yu.I., Kal'chuk, I.V. (2007). Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals: Ukr. Math. J., 59(8), 1224-1237. DOI: 10.1007/s11253-007-0082-4
[5] Kharkevych, Yu.I. (2017). On Approximation of the Quasi-Smooth Functions by Their Poisson Type Integrals: Journal of Automation and Information Sciences, 49(10), 74-81. DOI: 10.1615/JAutomatInfScien.v49.i10.80
[6] Stepanets, A.I. (2002). Methods of approximation theory. Ch. I. Kiev: Institute of Mathematics, National Academy of Sciences of Ukraine.
[7] Zhigalo, K.M., Kharkevich, Yu.I. (2002). Complete asymptotic behavior of deviation from a class of differentiable functions of the set of their Poisson harmonic integrals: Ukr. mate. Journal, 54 (1), 43-52.
[8] Natanson, I.P (1950). On the order of approximation of a continuous $2π$-periodic function with the help of its Poisson integral: Dokl. USSR Academy of Sciences, 72 (1), 11-14.
[9] Timan, A.F (1950). Accurate estimation of a residue in the approximation of periodic differentiable functions by Poisson integrals: Dokl. USSR Academy of Sciences, 74 (1), 17-20.
[10] Stark, E.L. (1973). The complete asymptotic expansion for the measure of approximation of AbelPoisson's singular integral for $Lip1$: Mathematical Notes, 13(1), 14-18. DOI: 10.1007/BF01093622
[11] Zhigalo, K.M., Kharkevich, Yu.I. (2009). Approximation of conjugate differentiable functions by their Abel-Poisson integrals: Ukr. mate. Zh. 61 (1), 73-82.
[12] Zhyhallo, T.V., Kharkevych, Yu.I. (2005). Approximation of $(ψ,β)$-differentiable functions defined on the real axis by Abel-Poisson operators: Ukr. Math. J., 51(8), 1297-1315. DOI: 10.1007/s11253-005-0262-z
[13] Pych, P. (1968). On biharmonic function in unit disc: Ann. pol. math., 20(3), 203-213.
[14] Falaleev, L.P. (1976). Complete asymptotic expansion for the upper edge of the deviation of functions from $Lip_11$ from one singular integral. Embedding theorems and their applications: Materials of the Union. Symp., Alma-Ata: Science, 163-167.
[15] Zhyhallo, K.M., Kharkevych, Yu.I. (2000). On the approximation of function of the Hölder class by biharmonic Poisson integrals: Ukr. Math. J., 52(7), 1113-1117. DOI: 10.1023/A:1005285818550
[16] Kharkevych, Yu.I., Zhyhallo, Т.V. (2008). Approximation of function from class $C_{β,∞}^ψ$ by Poisson biharmonic operators in the uniform metric: Ukr. Math. J., 60(5), 769-798. DOI: 10.1007/s11253-008-0093-9
[17] Kharkevich, Yu.I., Kalchuk, I.V. (2007). The asymptotics of the approximation values in the middle classes of differentiable functions using the integral integral functions of a class of differentiation functions: Ukr. mate. Zh. 59 (8), 1105-1115.
[18] Zhigalo, K.M, Kharkevich, Yu.I. (2009). Approximation of Conjugate Differential Functions by Poisson's Boharmonic Integrals: Ukr. mate. Journal, 61 (3), 333-345.
[19] Zhigalo, K.M, Kharkevich, Yu.I. (2011). Approximation of functions from $C_{β,∞}^ψ$ classes by two-dimensional Poisson integrals: Ukr. mate. Journal, 63 (7), 939959.
[20] Kal'chuk, I.V., Kharkevych, Yu.I. (2017). Approximating properties of biharmonic Poisson integrals in the classes $W_β^r H^α$ : Ukr. Math. J., 68(11), 1727-1740. DOI: 10.1007/s11253-017-1323-9
[21] Natanson, I.P. (1950). Fundamentals of the theory of functions of real change. Kiev: "Soviet school".
[22] Pych, P. (1967). Approximation of functions in $L-$ and $C-$metrics: Ann. Soc. Math. Pol., 1(11), 61-76.
- ACS Style
- Кальчук , І.В.; Харкевич, Ю.І. Про наближення в середньому функцiй класу Гельдера їх узагальненими iнтегралами Пуассона. Буковинський математичний журнал. 2018, 6 https://doi.org/https://doi.org/10.31861/bmj2018.01.069
- AMA Style
- Кальчук ІВ, Харкевич ЮІ. Про наближення в середньому функцiй класу Гельдера їх узагальненими iнтегралами Пуассона. Буковинський математичний журнал. 2018; 6(1-2). https://doi.org/https://doi.org/10.31861/bmj2018.01.069
- Chicago/Turabian Style
- Інна Володимирівна Кальчук , Юрій Іліодорович Харкевич. 2018. "Про наближення в середньому функцiй класу Гельдера їх узагальненими iнтегралами Пуассона". Буковинський математичний журнал. 6 вип. 1-2. https://doi.org/https://doi.org/10.31861/bmj2018.01.069