Перейти до основного вмісту
Нелокальна багатоточкова задача для диференціального операторного рівняння другого порядку
Городецький Василь Васильович 1 , Мартинюк Ольга Василівна 1 , Колісник Руслана Степанівна 1
1 Кафедра алгебри та інформатики, Чернівецький національний університет імені Юрія Федьковича, Чернівецька область, Чернівці, 58000, Україна
Ключові слова: нелокальна багатоточкова задача, еволюцiйне рiвняння другого порядку, ряди Фур'є
Анотація
Встановлено розв'язнiсть нелокальної багатоточкової задачi для еволюцiйного рiвняння другого порядку вiдносно часової змiнної з оператором, спектр якого дискретний. Нелокальна умова задовольняється в слабкому розумiннi у просторi формальних рядiв Фур'є, якi ототожнюються з лiнiйними неперервними функцiоналами (узагальненими елементами на просторi, пов'язаному з даним оператором).
Список використаних джерел

[1] Gaisin A.M. Estimation of Dirichlet series with Feyer lacunae // Dokl. RAS.  2000.  Vol. 370, No6. С.735737.

[2]  Nakhushev А.М. An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water // Differentsial'nye Uravneniya (in Russian). 1982. - 18 . - N 1, 72 - 81

[3]  Maĭkov, A. R.; Poezd, A. D.; Yakunin, S. A.; An efficient method for calculating nonstationary radiation conditions that are nonlocal in time for waveguide systems, Zh. Vychisl. Mat. i Mat. Fiz. (in Russian). 30 (N 8) (1990), 1267 - 1271; translation in U.S.S.R. Comput. Math. and Math. Phys,. 30 (1990), no. 4, 213-216 (1991).

[4] Nakhushev A.M., Equations of Mathematical Biology, Vysshaya Shkola, Moscow, 1995.

[5] Belavin I.A., Kapitsa S.P., Kurdyumov S.P., Mathematical model of global demographic processes taking into account spatial distribution,Zhurn. comput. math. and mat. phys. 38(N 6) (1988), 885902.

[6]  Bouzinab A., Arino O., On the exiand uniqueness for an age-depent population model with nonli- near growth, Facta Univ. Ser. Math Inf. 8 (1993), 55-68.

[7]  Cannon I.R., J. van der Hoek, Diffusion subject to the specification of mass, J. Math. Anal. and Appl. 115 (N 2) (1986), 517-529.

[8]  Song J., Some developments in mathematical demography and their applicatioto the Peoples Republic of China, Theor Pop. Biol. 22 (N 3) (1982), 382-391.

[9]  A.A. Dezin, Operators withfirst derivative with respect to "time"and non-local boundary conditions, Izv. Akad. Nauk SSSR Ser. Mat. (in Russian). 31 (N 1) (1967), 61-86.

[10] V.K. Romanko, Boundary value problems for a certain class of diferential operators, Differencial'nye Uravnenija (in Russian). 10 (N 1) (1974), 117-131.

[11]  M. Junusov, Operator equations with small parameter and nonlocal boundary conditions, Differentsial'nye Uravneniya (in Russian). 17 (N 1) (1981), 172-181.

[12]  A.H. Mamyan, General boundary problems on layer, Dokl. Akad. Nauk SSSR (in Russian). 267 (N 2) (1982), 292-296.

[13]  Makarov А.А., On the existence of a well-posed two-point boundary value problem in a layer for systems of pseudo-differential equations, Differentsial'nye Uravneniya (in Russian). 30 (N 1) (1994), 144-150; translation in Differential Equations, 30 (1994), no. 1, 133-138.

[14]  A.M. Nakhushev, On nonlocal boundary value problems with displacement and their relationship with loaded equations, Differentsial'nye Uravneniya (in Russian). 21 (N 1) (1985), 92-101.

[15]  Samarskiĭ, A. A., Some problems of the theory of differential equations, Differentsial'nye Uravneniya (in Russian). 16 (N 11) (1980), 1925-1935.

[16]  B.Yu. Ptashnyk, V.S. Il'kiv, I.Ya. Kmit', V.M. Polischuk, Nonlocal boundary value problems with partial differential equations , Naukova Dumka, Kyiv, 2002.

[17] Česalin, V. I., A problem with nonlocal boundaryconditions for operator-differential equations of odd order, Differentsial'nye Uravneniya (in Russian). 13 (N 3) (1977), 468-476.

[18]  Skubachevskiĭ, A. L., Model nonlocal problems for elliptic equations in dihedral angles, Differentsial'nye Uravneniya (in Russian). 26 (N 1) (1990), 106-115.

[19] Gorbachuk V.I., On the solvability of the Dirichlet problem for the second order differential-operator equation in different spaces, Direct and inverse problems of the spectral theory of differential operators: Collection of scientific papers, Kiev, 1985.

[20]  Городецький В.В., Задача Кошi для еволюцiйних рiвнянь нескiнченного порядку , Рута, Чернiвцi, 2005.

[21] Babenko, K. I., On a new problem of quasianalyticity and on the Fourier transform of entire functions Trudy Moskov. Mat. Obšč. (in Russian). 5 (1956), 523-542.

[22] Gorbachuk V.I., Gorbachuk M.L., Boundary values of solutions of differential-operator equations, Nauk. dumka, Kiev, 1984.

[23]  Городецький В.В., Проблема локалiзацiї Рiмана: деякi аспекти та застосування, Рута, Чернiвцi, 1998.

Цитувати
ACS Style
Городецький, В.В.; Мартинюк , О.В.; Колісник, Р.С. Нелокальна багатоточкова задача для диференціального операторного рівняння другого порядку. Буковинський математичний журнал. 2016, 3
AMA Style
Городецький ВВ, Мартинюк ОВ, Колісник РС. Нелокальна багатоточкова задача для диференціального операторного рівняння другого порядку. Буковинський математичний журнал. 2016; 3(2).
Chicago/Turabian Style
Василь Васильович Городецький, Ольга Василівна Мартинюк , Руслана Степанівна Колісник. 2016. "Нелокальна багатоточкова задача для диференціального операторного рівняння другого порядку". Буковинський математичний журнал. 3 вип. 2.
Експортувати
Ми використовуємо власні та сторонні файли cookies та localStorage для аналізу веб-трафіку та поширення матеріалів. Налаштування конфіденційності