Перейти до основного вмісту
Центри в кубічних диференціальних системах з однорідними інваріантними прямими
Козьма Думітру 1
1 Тираспольський державний університет, Кишинів, 2064, Республіка Молдова
Ключові слова: кубічні диференціальні системи
Анотація
Ми розв’язуємо задачу центру з принаймні трьома інваріантними прямими для кубічної диференціальної системи з особливою точкою $O(0,0)$ типу центру або фокусу, що має однорідну незмінні прямі.
Список використаних джерел

[1] Amel’kin, V.V., Lukashevich, N.A., Sadovsky, A.P. , Non-linear oscillations in the systems of second order// Minsk. –1982 (in Russian).

[2] Cozma, D., Şubă, A. , Partial integrals and the first focal value in the problem of centre// Nonlinear Differ. Equ. and Appl. –1995. – 2 ,–P. 21–34.

[3] Cozma, D., Şubă, A. , The solution of the problem of center for cubic differential systems with four invariant straight lines// Scientific Annals of the "Al.I.Cuza"University, Mathematics. –1998. – XLIV , s.I.a. – P. 517–530.

[4] Cozma, D. , The problem of the center for cubic systems with two parallel invariant straight lines and one invariant conic// Nonlinear Differ. Equ. and Appl. –2009. – 16 . – P. 213–234.

[5] Cozma D. , Center problem for cubic systems with a bundle of two invariant straight lines and one invariant conic// Bull. of Acad. of Sci. of Moldova. Mathematics. –2012. – 68, no.1. –P.32–49.

[6] Cozma D. , Rationally reversible cubic systems// Scientific Bulletin of Chernivtsi University. Series Mathematics. –2012. – 2 . –P. 114–119.

[7] Cozma, D., Şubă, A. , Solution of the problem of the centre for a cubic differential system with three invariant straight lines// Qualitative Theory of Dynamical Systems. –2001. – 2 , no.1. – P. 129–143.

[8] Lyapunov, A. M. , Probléme général de la stabilité du mouvement// Ann. of Math. Stud. –1947. – 17 . Princeton University Press.

[9] Poincaré, H. , Mémoire sur les courbes définies par une équation différentielle// Oeuvres de Henri Poincaré. –1951. – 1 , Gauthiers–Villars, Paris.

[10] Sadovskii, A.P. Solution of the center and focus problem for a cubic system of nonlinear oscillations// Differ. Equa. –1997. – 33 , no.2. – P. 236–244.

[11] Sadovskii, A.P. Solution of the center-focus problem for a cubic system reducible to a Lienard system// Differen. Uravn. –2006. – 42 , no.1. – P. 11–22.

[12] Sadovskii, A.P., Shcheglova T.V.Solution of the center-focus problem for a nine-parameter cubic system// Differ. Equa. –2011. -  47 , no.2. – P. 208–223.

[13] Şubă, A. , On the Liapunov quantities of two-dimensional autonomous system of differential equations with a critical point of centre or focus type// Bulletin of Baia Mare University, Math. and Infor. – 1998. – 13 . –P. 153-170.

[14] Şubă, A., Cozma, D., Solution of the problem of center for cubic differential systems with three invariant straight lines in generic position// Qualitative Theory of Dynamical Systems. –2005. – 6 . – P. 45–58.

Цитувати
ACS Style
Козьма, Д. Центри в кубічних диференціальних системах з однорідними інваріантними прямими. Буковинський математичний журнал. 2016, 1
AMA Style
Козьма Д. Центри в кубічних диференціальних системах з однорідними інваріантними прямими. Буковинський математичний журнал. 2016; 1(3-4).
Chicago/Turabian Style
Думітру Козьма. 2016. "Центри в кубічних диференціальних системах з однорідними інваріантними прямими". Буковинський математичний журнал. 1 вип. 3-4.
Експортувати
Ми використовуємо власні та сторонні файли cookies та localStorage для аналізу веб-трафіку та поширення матеріалів. Налаштування конфіденційності