[1] K. Borsuk. Theory of retracts. - M.: Mir. - 1971. - 292 p.
[2] О. Карлова. Перший функціональний лебеґівський клас і берівська класифікація нарізно неперервних відображень / / Наук. вісн. Чернівецького ун-ту. Математика. - Вип. 191-192. - 2004. - С. 52-60.
[3] В. Михайлюк. Топологія нарізної неперервності і одне узагальнення теореми Серпінського / / Мат. Студії. - 14, № 2. - 2000. - C. 193-196.
[4] В.В. Михайлюк, О.В. Собчук. Функції з діагоналлю скінченного класу Бера / / Мат. Студії. - 14, № 1. - 2000. - С. 23-28.
[5] В.В. Михайлюк, О.В. Собчук. Берівська класифікація нарізно неперервних функцій і залежність від зліченного числа координат / / Наук. вісн. Чернів. ун-ту. Математика. - Вип. 191-192. - 2004. - С. 116-118.
[6] Р. Engelking. General topology. - M.: Mir.- 1986. - 790 p.
[7] R. Ваіге. Sur les functions des variables reélles / / Ann. Mat. Pura Appl., ser. 3. - 3 . - 1899. - P. 1-123.
[8] J.E. Hart, K. Kunen. On the regularity of the topology of separate continuity / / Top. Appl. - 123 . - 2002. - P. 103-123.
[9] J. Lukeš, J. Malý, L. Zaji̇́ček. Frne Topology Methods іn Real Analysis and Potenrial Theory. - Springer-Verlag. - 1986. - 480 p.
[10] Z. Piotrowski, R. Valhn, E. Wrngler. On the separately open topology. - Tatra Mt. Math. Publ. - 42 . - 2009. - P. 39-49.
- ACS Style
- Карлова , О.О.; Михайлюк , В.В.; Собчук, О.В. Про продовження нарізно неперервних функцій. Буковинський математичний журнал. 2018, 2
- AMA Style
- Карлова ОО, Михайлюк ВВ, Собчук ОВ. Про продовження нарізно неперервних функцій. Буковинський математичний журнал. 2018; 2(1).
- Chicago/Turabian Style
- Олена Олексіївна Карлова , Володимир Васильович Михайлюк , Олександр Васильович Собчук. 2018. "Про продовження нарізно неперервних функцій". Буковинський математичний журнал. 2 вип. 1.