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CИСТЕМИ ЧИСЛЕННЯ З НЕНУЛЬОВОЮ НАДЛИШКОВIСТЮ ТА ЇХ

ЗАСТОСУВАННЯ У ТЕОРIЇ ЛОКАЛЬНО СКЛАДНИХ ФУНКЦIЙ

У роботi розглядається зображення чисел у системi з основою a > 1 i алфавiтом (на-
бором цифр) A ≡ {0, 1, ..., r}, a− 1 < r ∈ N :

x =
∞∑

n=1

αn

an
≡ ∆ra

α1α2...αn..., αn ∈ A.

За рахунок надлишкового алфавiту числа вiдрiзка [0; r
a−1 ] мають, взагалi кажучи, не єдине

зображення i навiть можуть мати континуальну множину рiзних зображень.
Геометрiю (тополого-метричнi властивостi) такого зображення (ra-зображення) роз-

кривають цилiндри:

∆ra
c1c2...cm = {x : x = ∆ra

c1c2...cma1a2...an..., an ∈ A},

властивостi яких, включаючи специфiку перекриттiв, детально висвiтлено.
В роботi представлено результати дослiдження структурних, варiацiйних, тополого-

метричних i частково фрактальних властивостей функцiї, означенної рiвнiстю:

f(x =
∞∑

n=1

αn

(r + 1)n
) = ∆ra

α1α2...αn..., αn ∈ A.

Доведено її неперервнiсть в точках вiдрiзка [0; 1], якi в традицiйнiй системi числення з
основою (r+ 1) мають єдине зображення, i розривнiсть у точках злiченної всюди щiльної
в [0; 1] множини, а також нiде не монотоннiсть та необмеженiсть варiацiї функцiї.

Для випадку r = 1, a = 1+
√
5

2 вказанi фрактальнi множини рiвнiв з розмiрнiстю
Гаусдорфа-Безиковича не меншою − loga 2.

Ключовi слова i фрази: системи числення з ненульовою надлишковiстю, цилiндр, кла-
сична s-символьна система, множина рiвня функцiї, функцiя необмеженої варiацiї.
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Вступ

Бiльшiсть функцiй, визначених на вiдрiзку, мають локально складну структуру у кон-
текстi монотонностi, варiацiацiйних, диференцiальних, тополого-метричних та фрактальних
властивостей.

Крiм неперервних нiде не монотонних, недиференцiйовних та сингулярних до локально
складних ми вiдносимо функцiї, якi мають злiченну всюди щiльну у вiдрiзку (областi визна-
чення) множину точок розриву. Одному з класiв таких функцiй присвячена дана робота.

Для задання функцiї ми використовуємо “нестандартний” iнструмент – систему зображе-
ння чисел з надлишковим алфавiтом i, взагалi кажучи, нецiлою основою. Таким системам
присвячено сотнi статей [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], в яких розв’язуються рiзноплановi задачi (в
основному метричної, включаючи фрактальну, та ймовiрнiсної теорiї чисел). Їх застосування
до потреб теорiї функцiй в цих роботах не прослiдковується.

Нехай 1 < a – фiксоване дiйсне число; a − 1 ≤ r – натуральне число; A = {0, 1, ..., r} –
алфавiт; L = A×A× ... – множина послiдовностей з елементiв алфавiту.

Розглядається вiдображення γ : L → [0; r
a−1 ], а саме

γ((αn)) =
∞∑
n=1

αn

an
≡ ∆ra

α1α2...αn... = x ∈
[
0;

r

a− 1

]
, (αn) ∈ L.

Символiчний запис ∆ra
α1α2...αn... ми називаємо ra-зображенням числа x, при цьому αn називаємо

n-ою цифрою даного зображення. Випадок r = 1 заслуговує окремої уваги в силу мiнiмальностi
алфавiту A.

Якщо a = r + 1, то ra–зображення є класичним зображенням чисел у системi з натураль-
ною основою a, яке має нульову надлишковiсть (кожне число має не бiльше двох зображень,
причому тих, що їх мають два лише злiченна множина).

Означення 1. При рацiональному a число x, яке має ra–зображення з перiодом (0), назива-
тимемо ra–рацiональним.

Очевидно, що коли число a — рацiональне, то ra–зображення також рацiональне.
Зрозумiло, що ra–рацiональне число є числом рацiональним. Але не кожне рацiональне чи-

сло є ra–рацiональним. Наприклад, число x з чисто перiодичним ra–зображенням ∆ra
(c1...cp)

перi-
од якого складається принаймнi з двох рiзних цифр є рацiональним, але не є ra–рацiональним.
Справдi, число x як значення виразу

x = ∆ra
(c1...cp)

=
(c1
a

+ . . .+
cp
ap

)
+

1

ap

(c1
a

+ . . .+
cp
ap

)
+

1

a2p

(c1
a

+ . . .+
cp
ap

)
+ . . . =

c

1− 1
ap

,

де c = c1
a + . . .+

cp
ap є рацiональним числом, але не є ra–рацiональним (взагалi кажучи).

Умова r ≥ a гарантує iснування чисел, якi мають бiльше двох зображень, i навiть кон-
тинуальну їх множину, що породжує ненульову надлишковiсть даного (r + 1)–символьного
кодування чисел. Такi системи вивчаються з 1957 року, першими в цьому напрямi були робо-
ти [1, 2]. Сьогоднi системи кодування дiйсних чисел з ненульовою надлишковiстю iнтенсивно
вивчаються, iснують сотнi робiт їм присвячених [3, 4, 5]. В основному це системи, в яких осно-
ва a не є цiлою. При цьому розглядаються рiзнi об’єкти i розв’язуються рiзнi задачi. Iснує
кiлька вiдносно повних оглядiв результатiв цих дослiджень [6], що стосуються теорiї чисел i
фрактального аналiзу множин.
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Дана теоретико–числова тематика тiсно пов’язана з iншими напрямами сучасних дослi-
джень: геометрiєю числових рядiв, теорiєю нескiнченних згорток Бернуллi, теорiєю динамi-
чних систем та теорiєю функцiй зi складною локальною будовою.

У системах з ненульовою надлишковiстю вбачаємо потужний засiб для конструювання та
дослiдження математичних об’єктiв з локально складною тополого–метричною структурою,
зокрема функцiй. Дана робота має за мету продемонструвати такi можливостi.

1 Геометрiя ra–зображення

Кожна пара параметрiв a, r породжує свою унiкальну геометрiю i специфiку перекрит-
тiв. Її частково висвiтлюють властивостi цилiндричних множин. Окремої уваги заслуговують
випадки: a — число натуральне; a — рацiональне; a — iррацiональне.

Означення 2. Нехай (c1, c2, . . . , ck) — фiксований впорядкований набiр елементiв алфавiту.
Цилiндром (ra-цилiндром) рангу k з основою c1c2...ck називається множина

∆ra
c1c2...ck

= {x : x = ∆ra
c1...ckα1α2...αn..., (αn) ∈ L}.

Цилiндри ∆ra
c1...cm−1j

i ∆ra
c1...cm−1[j+1], j ∈ {0, 1, ..., r − 1} називаються сусiднiми, вони нале-

жать одному i тому ж цилiндру попереднього рангу ∆ra
c1...cm−1

.
Цилiндри мають властивостi:
1) ∆ra

c1...ck
= ∆ra

c1...ck0
∪∆ra

c1...ck1
∪ ... ∪∆ra

c1...ckr
;

2) ∆ra
c1...ck

= [u;u+ d], де u =
k∑

i=1

ci
ai

, d = r
ak·(a−1)

;

3) довжина цилiндра: |∆ra
c1...ck

| = d = r
ak·(a−1)

→ 0 (k → ∞).;

4)
∞∩
k=1

∆ra
c1...ck

= ∆ra
c1c2...ck...

= x для будь-якої послiдовностi (ck) ∈ L;

5) min∆c1c2...ckc < min∆c1c2...ck[c+1], 0 6 c 6 r − 1;

6) ∆ra
α1...αk

= ∆ra
β1...βk

⇔
k∑

i=1
a−i(αi − βi) = 0;

7) ∆ra
c1...ckc

∩∆ra
c1...ck[c+1] = [∆ra

c1...ck[c+1](0);∆
ra
c1...ckc(r)

] ̸= ∅;

8) довжина перекриття:

|∆ra
c1...ck−1c

∩∆ra
c1...ck−1[c+1]| = ∆ra

c1...ck−1c(r)
−∆ra

c1...ck−1[c+1](0) =
r − a+ 1

ak(a− 1)
;

9) умова ∆ra
c1...ck−1c

∩∆ra
c1...ck−1[c+1] = ∆ra

c1...ck−1cr
= ∆ra

c1...ck−1[c+1]0 рiвносильна

c

ak
+

r

ak+1
=

c+ 1

ak
, тобто r = a,

що може виконуватись лише при цiлих a;
10) рiвнiсть |∆ra

c1...ckck+1
| = 1

2 |∆
ra
c1...ck

| виконується лише за умови a = 2;
11) умова ∆ra

c1...ck−1c
∩∆ra

c1...ck−1[c+1] = ∆ra
c1...ck−1cr . . . r︸ ︷︷ ︸

m

= ∆ra
c1...ck−1[c+1]0 . . . 0︸ ︷︷ ︸

m

рiвносильна

c

ak
+

r

ak+1
+ . . .+

r

ak+m
=

c+ 1

ak
, тобто r =

am(a− 1)

am − 1
.

Зауваження 1. Властивостi 8)–11) виражають специфiку перекриттiв ra–цилiндрiв.
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2 Один особливий випадок

Розглянемо випадок r = 2. Тодi 1 < a < 3.

Теорема 1. Якщо r = 2, то множина

C ≡ C[ra; {0, 2}] = {x : x = ∆ra
α1α2...αn..., αn ∈ {0, 2} n ∈ N}

є досконалою нiде не щiльною самоподiбною множиною канторiвського типу, розмiрнiсть Гаусдорфа-
Безиковича якої рiвна − loga 2.

Доведення. Використовуючи цилiндри ra-зображення, легко описати структуру множини C,
а саме:

1. C ⊂ [∆ra
0 ∪∆ra

2 ], причому ∆ra
0 ∩∆ra

2 = ∅,

max{∆ra
0 } = ∆ra

0(2) ∈ C, min{∆ra
2 } = ∆ra

2(0) ∈ C.

2. ∆ra
c1...cm ⊃ (∆ra

c1...cm0 ∪∆ra
c1...cm2), ∆ra

c1...cm0 ∩∆ra
c1...cm2 = ∅.

3. C ⊂ Cn, Cn =
∪

α1∈V
...

∪
αn∈V

∆ra
α1...αn

, V = {0, 2} ∀n ∈ N .

4. C =
∞∩
n=1

Cn.

Згiдно з вiдомою теоремою про структуру досконалих множин робимо висновок, що мно-
жина C є досконалою i нiде не щiльною (не мiстить жодного як завгодно малого iнтервалу).

Множина C є самоподiбною, оскiльки

C = [∆ra
0 ∩ C] ∪ [∆ra

1 ∩ C],

де C
k∼ (∆ra

0 ∩ C) ∼= (∆ra
2 ∩ C), k = r

a−1 : |∆ra
0 | = 1

(a−1) :
1

a(a−1) = a.

Її самоподiбна розмiрнiсть є розв’язком рiвняння 2 · ax = 1, тобто x = − loga 2. Вона рiвна
розмiрностi Гусдорфа-Безиковича, оскiльки множина C задовольняє умову вiдкритої множи-
ни. Теорему доведено.

3 Функцiя з фрактальними властивостями множин рiвнiв

Розглядається функцiя f , означена рiвнiстю f(x = ∆r+1
α1α2...αn...) = ∆ra

α1α2...αn..., де

∆r+1
α1α2...αn... =

∞∑
n=1

αn

(r + 1)n
, (αn) ∈ L.

Оскiльки числа злiченної множини у системi з основою r + 1 мають два формально рiзнi
зображення: ∆r+1

α1α2...αn(0)
= ∆r+1

α1α2...[αn−1](r) (їх ми називаємо (r+1)–бiнарними), то за для коре-
ктностi означення функцiї f домовимось використовувати лише перше з вказаних зображень
(r + 1)–бiнарного числа.

Теорема 2. Функцiя f є неперервною у кожнiй (r+1)–унарнiй точцi i неперервною в (r+1)–
бiнарнiй точцi тодi i лише тодi, коли a = r + 1.
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Доведення. Якщо функцiя f неперервна на вiдрiзку, то вона неперервна в кожнiй точцi цього
вiдрiзка. Нехай x0 = ∆r+1

α1α2...αn... — (r+1)–унарна точка. Нехай f(x0) = ∆ra
α1α2...αn.... Розглянемо

точку x, що не рiвна x0, тодi з x ̸= x0 слiдує, що iснує такий номер k, що αk(x) ̸= αk(x0), але
αi(x) = αi(x0) для усiх i < k, причому умова k → ∞ рiвносильна x → x0. Для обґрунтування
неперервностi функцiї fa в точцi x0 покажемо, що

lim
x→x0

|f(x)− f(x0)| = 0.

Згiдно з означенням функцiї f маємо

lim
x→x0

|f(x)− f(x0)| = lim
x→x0

|f(∆ra
α1α2...αk−1α

′
kα

′
k+1...

)− f(∆ra
α1α2...αk−1αkαk+1...

)| =

= lim
k→∞

|∆ra
α1α2...αk−1α

′
kα

′
k+1...

−∆ra
α1α2...αk−1αkαk+1...

| ≤

≤ lim
k→∞

1

ak−1
|∆ra

α′
kα

′
k+1...

−∆ra
αkαk+1...

| = 0.

Отже, функцiя f неперервна в (r + 1)–унарнiй точцi.
Неперервнiсть функцiї в кожнiй (r+1)–бiнарнiй точцi рiвносильна виконанню рiвностi для

будь-якого k ∈ N

f(∆r+1
α1α2...αk−1αk(0)

) = f(∆r+1
α1α2...αk−1[αk−1](r)), для будь-якого k ∈ N.

Останню рiвнiсть можна переписати у виглядi:

k−1∑
i=1

αi

ai
+

αk

ak
=

k−1∑
i=1

αi

ai
+

αk − 1

ak
+

r

a2 − a
,

звiдки
αk

ak
=

αk − 1

ak
+

r

a2 − a
,

що можливо лише за умови a = r + 1. Тобто функцiя f неперервна в кожнiй (r + 1)–бiнарнiй
точцi тодi i лише тодi, коли a = r + 1.

Зауваження 2. Зазначимо, що коли a = r + 1, тобто ra-зображення спiвпадає з (r + 1)-
зображенням, то f(x) = x.

Теорема 3. Якщо a < r + 1, то функцiя f є нiде не монотонною.

Доведення. Можливi випадки: 1) 1 < a ≤ r; 2) a ∈ (r; r + 1). Для доведення нiде не моно-
тонностi функцiї досить довести її немонотоннiсть на довiльному цилiндрi m-го рангу. Для
конкретностi розглянемо цилiндр ∆r+1

c1...cm = [∆r+1
c1...cm(0);∆

r+1
c1...cm(r)].

1) Нехай 1 < a ≤ r, тодi r+1−a ≥ 1. Розглянемо на цилiндрi ∆r+1
c1c2...cm точки x1 = ∆r+1

c1...cm(0),
x2 = ∆r+1

c1...cmr0r(r−1), x3 = ∆r+1
c1...cmr1(0). Очевидно, що x1 < x2 < x3. Розглянемо рiзницi

f(x2)− f(x1) =f(x2) > 0,

f(x2)− f(x3) =
r

am+1
+

r

am+3
+

r − 1

am+3(a− 1)
− r

am+1
− 1

am+2
=

=
r(a− 1) + r − 1− a(a− 1)

am+3(a− 1)
=

ra− r + r − 1− a2 + a

am+3(a− 1)
=

=
a(r + 1− a)− 1

am+3(a− 1)
≥ a− 1

am+3(a− 1)
> 0.
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Оскiльки (f(x2)− f(x1))(f(x2)− f(x3)) > 0, то функцiя f немонотонна на цилiндрi ∆r+1
c1c2...cm ,

а в силу довiльностi вибору ∆r+1
c1c2...cm нiде не монотонна на усiй областi визначення.

2) Нехай a ∈ (r; r + 1), тодi r + 1− a > 0.
∆r+1

c1...cm = [∆r+1
c1...cm(0); ∆

r+1
c1...cm(r)]. Розглянемо точки x1 = ∆r+1

c1...cm(0), x2 = ∆r+1
c1...cm0 r...r︸︷︷︸

n

(0),

x3 = ∆r+1
c1...cm1(0). Очевидно, що x1 < x2 < x3. Розглянемо рiзницi

f2(x)− f1(x) =
1

am

(r
a
+ ...+

r

an

)
> 0,

f(x3)− f(x2) =
1

am

(
1

a
− r

a2
· 1

1− 1
a

(
1− 1

an

))
=

=
1

am

(
1

a
− r

a(a− 1)
(1− 1

an
)

)
=

1

am

(
a− 1− r

a(a− 1)
+

r

an+1
(a− 1)

)
.

Нехай r−(a−1)
a(a−1) = c > 0. Тодi

am(f(x3)− f(x2)) =
a− 1− r

a(a− 1)
+

r

an+1(a− 1)
=

r

an+1(a− 1)
− c.

Оскiльки r
an+1(a−1)

монотонно прямує до 0, то iснує n0 таке, що для всiх n > n0 виконувати-
меться нерiвнiсть r

an+1(a−1)
< c. Для таких f(x3)− f(x2) < 0. Оскiльки

(f(x2)− f(x1))(f(x3)− f(x− 2)) < 0,

то на цилiндрi ∆ra
c1...cm функцiя f(x) не є монотонною. Отже, вона нiде не монотонна.

Теорема 4. Якщо a < r + 1, то функцiя f має необмежену варiацiю.

Доведення. Нехай ∆ ≡ [0; r
a−1 ]. Коливання функцiї f на цилiндрi ∆r+1

α1α2...αn
дорiвнює довжинi

цилiндра ∆ra
α1α2...αn

, що є образом цилiндра ∆r+1
α1α2...αn

. Тому варiацiя функцiї f перевищує
сумарну довжину цилiндрiв образiв, тобто

V (f) > Vk =

r∑
α1=0

r∑
α2=0

. . .

r∑
αn=0

|∆ra
α1α2...αn

|.

Оскiльки

V1 ≡
r∑

α1=0

|∆ra
α1
| = (r + 1)

r

a(a− 1)
>

ar

a(a− 1)
=

r

a− 1
= |∆| > 1.

Тодi

k ≡ V1

|∆|
> 1 i V1 = k|∆|.

Аналогiчно,
r∑

α2=0

|∆ra
c1α2

| = |∆ra
c1 |

r∑
α2=0

|∆ra
α2
| > |∆ra

c1 |.

Тодi

V2 ≡
r∑

α1=0

r∑
α2=0

|∆ra
α1α2

| =
r∑

α1=0

|∆ra
α1
|

r∑
α2=0

|∆ra
α2
| > k2|∆|,

. . . . . . . . . . . . . . . . . .



158 Васькевич С.О., Вовк Ю.Ю., Працьовитий O.M.

Vn =
r∑

α1=0

r∑
α2=0

. . .
r∑

αn=0

|∆ra
α1α2...αn

| > kn|∆|,

то
V (f) ≥ lim

n→∞
Vn > lim

n→∞
kn|∆| = ∞.

Отже, функцiя f має необмежену варiацiю.

4 Двосимвольнi системи

Випадок r = 1 в силу мiнiмальностi алфавiту заслуговує на окрему увагу. Зосередимо
iнтерес на цьому випадку. Тому далi 1 < a < 2. У цьому випадку маємо

|∆ra
c1c2...cm | =

1

am(a− 1)
;

|∆ra
0 ∩∆ra

1 | = |[∆ra
1(0);∆

ra
0(1)]| = ∆ra

0(1) −∆ra
1(0) =

2− a

a(a− 1)
;

|∆ra
c1...cm−10

∩∆ra
c1...cm−11

| = |[∆ra
c1...cm−11(0)

;∆ra
c1...cm−10(1)

]| = ∆ra
c1...cm−10(1)

−∆ra
c1...cm−11(0)

=

=
2− a

am(a− 1)
.

Зауважимо, що iснують окремi цiкавi випадки. Наприклад, рiвнiсть

|∆ra
c1...cm−10

∩∆ra
c1...cm−11

| = 1

2
|∆ra

c1...cm |

виконується лише за умови a = 3
2 .

Справдi, у цьому випадку виконується рiвнiсть 2−a
am(a−1) =

1
2 ·

1
am(a−1) , що рiвносильно умовi

a = 3
2 . За цiєї умови [0; r

a−1 ] = [0; 2]. Цей випадок заслуговує окремого розгляду.

Iнший унiкальний випадок: r = 1, a = 1+
√
5

2 . З’ясуємо, за яких умов два сусiднi цилiндри
m-го рангу перетинаються по цилiндру (m+ 2)-го рангу, тобто коли

∆ra
c1...cm−10

∩∆ra
c1...cm−11

= ∆ra
c1...cm−1011

= ∆ra
c1...cm−1100

. (1)

Ранги цилiндрiв ∆ra
c1...cm−1011

i ∆ra
c1...cm−1100

рiвнi, тому для рiвностi цилiндрiв досить, щоб збi-
галися їхнi початки, тобто щоб

min∆ra
c1...cm−1011

−min∆ra
c1...cm−1100

= 0.

А це рiвносильно рiвностi
1

am−1
(
1

a2
+

1

a3
− 1

a
) = 0,

тобто a+ 1− a2 = 0, яка виконується лише при одному додатному a = 1+
√
5

2 .
Оскiльки

max∆ra
c1...cm−10

= max∆ra
011,min∆ra

c1...cm−11
= min∆ra

100,

то необхiдною i достатньою умовою для виконання (1) є a = 1+
√
5

2 .

Зауваження 3. Впорядкованi трiйки чисел (1, 0, 0) i (0, 1, 1) у ra-зображеннi числа при r = 1,
a = 1+

√
5

2 , в якостi послiдовних цифр зображення є взаємозамiнними.
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Теорема 5. Якщо r = 1, a = 1+
√
5

2 , то множина f−1(y0) рiвня y0 = ∆ra
(100) є континуальною i

має фрактальну розмiрнiсть не меншу числа 1
3 .

Доведення. Згiдно останнього зауваження число ∆ra
(100), зображення якого має перiод (100),

має континуальну множину рiзних ra-зображень, оскiльки кожна трiйка (1, 0, 0) послiдовних
цифр без втрати значення може бути замiнена альтернативною (0, 1, 1). Тому множина про-
образiв y0 = ∆ra

(100) при вiдображеннi y = f(x) мiстить пiдмножину чисел вiдрiзка [0; 1], кла-
сичне вiсiмкове зображення яких використовує лише двi цифри 4 i 5.

Справдi,

x =(
α1

2
+

α2

22
+

α3

23
) + (

α4

24
+

α5

25
+

α6

26
) + (

α7

27
+

α8

28
+

α9

29
) + ... =

=
4α1 + 2α2 + α3

23
+

4α4 + 2α5 + α6

26
+

4α7 + 2α8 + α9

29
+ ...

Оскiльки
1

2
+

0

22
+

0

23
=

4

23
,
0

2
+

1

22
+

1

23
=

5

23
,

то одним з прообразiв числа y0 = ∆ra
(100) є x0 = ∆8

(4), iншим ∆8
(5) i ∆ra

(45) i т.д. Отже, вся множина
канторiвського типу

C[8; {4, 5}] = {x : x = ∆8
a1a2...an..., де an ∈ {4, 5}}

належить множинi рiвня. Її самоподiбна розмiрнiсть та розмiрнiсть Гаусдорфа-Безиковича
збiгаються i рiвнi log8 2 = 1

3 .
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In this paper we study representations of real numbers in a numeral system with the base
a > 1 and alphabet (digits set) A ≡ {0, 1, ..., r}, a− 1 < r ∈ N given by

x =

∞∑
n=1

αn

an
≡ ∆ra

α1α2...αn..., αn ∈ A.

Since the alphabet is redundant the numbers from the interval [0; r
a−1 ] have not a single

representation and can even have a continuous set of different representations.
We describe the geometry (topological and metric properties) of such representations (the

ra-representations) in terms of cylinders defined by

∆ra
c1c2...cm = {x : x = ∆ra

c1c2...cma1a2...an..., an ∈ A},

We analyze their properties in detail, including the specific nature of overlaps.
We present results on the structural, variational, topological, metric and partially fractal

properties of the function defined by

f

(
x =

∞∑
n=1

αn

(r + 1)n

)
= ∆ra

α1α2...αn..., αn ∈ A.

We prove the function is continuous at all points of the interval [0, 1] that have a unique
representation in the classical numeral system on the base r + 1 and prove the function is
discontinuous at points of a countable everywhere dense set in [0, 1]. Furthermore, we show
that the function is nowhere monotonic and has unlimited variation.

In the particular case r = 1 and a = 1+
√
5

2 , we specify fractal level sets with Hausdorff–
Besicovitch dimension not less than − loga 2.


