Перейти до основного вмісту
Singularly finite rank nonsymmetric perturbations ${\mathcal H}_{-2}$-class of a self-adjoint operator
Dudkin Mykola Evgenovich 1 , Dyuzhenkova Olga Yuryivna 1
1 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
Keywords: singular perturbations, scale of Hilbert spaces, non-symmetric perturbation
Abstract

The singular nonsymmetric rank one perturbation of a self-adjoint operator from classes ${\mathcal H}_{-1}$ and ${\mathcal H}_{-2}$ was considered for the first time in works by Dudkin M.E. and Vdovenko T.I. [8, 9]. In the mentioned papers, some properties of the point spectrum are described, which occur during such perturbations.

This paper proposes generalizations of the results presented in \cite{k8,k9} and \cite{k2} in the case of nonsymmetric class ${\mathcal H}_{-2}$ perturbations of finite rank. That is, the formal expression of the following is considered
\begin{equation*}
\tilde A=A+\sum \limits_{j=1}^{n}\alpha_j\langle\cdot,\omega_j\rangle\delta_j,
\end{equation*}
where $A$ is an unperturbed self-adjoint operator on a separable Hilbert space ${\mathcal H}$, $\alpha_j\in{\mathbb C}$, $\omega_j$, $\delta_j$, $j=1,2, ..., n<\infty$ are vectors from the negative space ${\mathcal H}_{-2}$ constructed by the operator $A$, $\langle\cdot,\cdot\rangle$ is the dual scalar product between positive and negative spaces. 

References

[1] Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics. Second edition. With an appendix by Pavel Exner. AMS Chelsea Publishing, Providence, RI, 2005.
[2] Albeverio S., Kurasov P. Singular perturbations of differential operators; solvable Schrodinger type operators. Univ. Press, Cambridge, 2000.
[3] Albeverio S., Nizhnik L. Schrodinger operators with nonlocal point interactions. J. Math. Anal. Appl. 2007, 332, 884–895. doi:10.1016/j.jmaa.2006.10.070
[4] Albeverio S., Hryniv R., Nizhnik L. Inverse spectral problems for nonlocal Sturm-Liouville operators Inverse Problems 2007, 23. 523–535. doi:10.1088/0266-5611/23/2/005
[5] Vishik M.I. On general boundary-value problems for elliptic differential equation Trudy Moskow. Mat. Obshchestva 1952, 1, 187–246. (in Russian)
[6] Dudkin М.Е. Singularly perturbed normal operators, Ukrain. Mat. J. 1999, 51, (8), 1177–1187. doi: 10.1007/BF02592506 (translation of Ukrain. Mat. Zh. 1999 51, (8), 1045–1053. (Ukrainian))
[7] Dudkin M.E., Nizhnik L.P. Singularly perturbed normal operators Methods Funct. Anal. Topology 2010, 16, (4), 298–303.
[8] Dudkin M.E., Vdovenko T.I. Dual pair of eigenvalues in rank one singular perturbations Matematychni Studii 2017, 48, (2), 156–164. doi:10.15330/ms.48.2.156-164
[9] Dudkin M.E., Vdovenko T.I. On extensions of linear functionals with applications to non-symmetrically singular perturbations Methods Funct. Anal. Topology 2018, 24, (3), 193–206.
[10] Mityagin B.S. The Spectrum of a Harmonic Oscillator Operator Perturbed δ-Interactions Integr. Equ. Oper. Theory 2016, 85, 451–495. doi:10.1007/s00020-016-2307-0
[11] Kato T. Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. doi:10.1007/978-3-642-66282-9

Cite
ACS Style
Dudkin, M.E.; Dyuzhenkova, O.Y. Singularly finite rank nonsymmetric perturbations ${\mathcal H}_{-2}$-class of a self-adjoint operator. Bukovinian Mathematical Journal. 2021, 9 https://doi.org/ https://doi.org/10.31861/bmj2021.01.11
AMA Style
Dudkin ME, Dyuzhenkova OY. Singularly finite rank nonsymmetric perturbations ${\mathcal H}_{-2}$-class of a self-adjoint operator. Bukovinian Mathematical Journal. 2021; 9(1). https://doi.org/ https://doi.org/10.31861/bmj2021.01.11
Chicago/Turabian Style
Mykola Evgenovich Dudkin, Olga Yuryivna Dyuzhenkova. 2021. "Singularly finite rank nonsymmetric perturbations ${\mathcal H}_{-2}$-class of a self-adjoint operator". Bukovinian Mathematical Journal. 9 no. 1. https://doi.org/ https://doi.org/10.31861/bmj2021.01.11
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings