Given a topological ring $R$, we study semitopological $R$-modules, construct their completions, Bohr and borno modifications. For every topological space $X$, we construct the free (semi) topological $R$-module over $X$ and prove that for a $k$-space $X$ its free semitopological $R$-module is a topological $R$-module. Also we construct a Tychonoff space $X$ whose free semitopological $R$-module is not a topological $R$-module.
[1] Arhangel’skii A., Tkachenko M. Topological groups and related structures, Atlantis Studies in Mathematics, 1. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
[2] Banakh T.O., Maslyuchenko V.K., Ravsky A.V. Semitopological vector spaces, Math. Bull. Shevchenko Sci. Soc. 2016, 13, 84–89.
[3] Bouziad A. Notes sur la propriete de Namioka, Trans. Amer. Math. Soc. 1994, 344(2), 873–883.
[4] Cao J., Moors W. Separate and joint continuity of homomorphisms defined on topological groups, New Zealand J. Math. 2004, 33(1), 41–45.
[5] Ebrahimi-Vishki Y.R. Joint continuity of separately continuous mappings on topological groups, Proc. Amer. Math. Soc. 1996, 124 (11) (1996), 3515–3518.
[6] Engelking R. General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.
[7] Kechris A.S. Classical descriptive set theory, Springer-Verlag, New York, 1995.
[8] Maslyuchenko V.K. Vector spaces with additive tiopology and separately continuous multiplication by scalars, Sci. Bull. Chernivtsi Univ. 2001, 1(4) (2011), 95–99 (in Ukrainian).
[9] Mykhaylyuk V.V., Pol R. On a problem of Talagrand concerning separately continuous functions, J. Institute Math. Jussieu, 2020; (doi.org/10.1017/S1474748019000677).
[10] Rolewicz S. Metric linear spaces, PWN, 1984.
- ACS Style
- Banakh, T.O.; Ravsky, O.V. Semitopological modules. Bukovinian Mathematical Journal. 2021, 9 https://doi.org/https://doi.org/10.31861/bmj2021.01.01
- AMA Style
- Banakh TO, Ravsky OV. Semitopological modules. Bukovinian Mathematical Journal. 2021; 9(1). https://doi.org/https://doi.org/10.31861/bmj2021.01.01
- Chicago/Turabian Style
- Taras Onufriyovych Banakh, Oleksandr Vitaliyovych Ravsky. 2021. "Semitopological modules". Bukovinian Mathematical Journal. 9 no. 1. https://doi.org/https://doi.org/10.31861/bmj2021.01.01