Перейти до основного вмісту
Pairs of Hahn and separately continuous function
Kushnir Anastasia Serhiivna 1 , Maslyuchenko Oleksandr Volodymyrovych 2,1
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Institute of Mathematics, University of Silesia in Katowice, Katowice, 40-007, Poland
Keywords: pair of Hahn, semicontinuous function, separately continuous function, minimal layering, maximal layering
Abstract
In this paper we continue the study of interconnections between separately continuous function which was started by V. K. Maslyuchenko. A pair $(g,h)$,  of functions on a topological space is called a pair of Hahn if $g ≤ h, g$ is an upper semicontinuous function and $h$ is a lower semicontinuous function. We say that a pair of Hahn $(g,h)$  is generated by a function $f$,  which depends on two variables, if the infimum of $f$  and the supremum of $f$  with respect to the second variable equals $g$ and $h$ respectively. We prove that for any perfectly normal space $X$  and non-pseudo compact space $Y$ every pair of Hahn on $X$  is generated by a continuous function on $X$ x $Y$.  We also obtain that for any perfectly normal space $X$ and for any space $Y$  having non-scattered compactification any pair of Hahn on $X$  is generated by a separately continuous function on $X$ x $Y$.
References

[1] Tong, H. Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289–292.
[2] Katetov, M. On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85–91.
[3] Voloshin, G. A., Maslyuchenko, V. K.; Mel’nik, V. S. Hahn pairs and a zero inverse problem. (in Ukrainian) Mat. Stud. 48 (2017), no. 1, 74–81.
[4] T. Jech, Set Theory, Springer-Verlag Heldermann Verlag, Berlin, 2003.
[5] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
[6] Juhasz, I. Cardinal functions in topology—ten years later. Second edition. Mathematical Centre Tracts, 123. Mathematisch Centrum, Amsterdam, 1980. iv+160 pp.
[7] Bourbaki, N. Elements de mathematique. VIII. Premiere partie: Les structures fondamentales de l’analyse. Livre III: Topologie generale. Chapitre IX: Utilisation des nombres reels en topologie generale. (in French) Actualites Sci. Ind., no 1045. Hermann et Cie., Paris, 1948. ii+101+ii pp.
[8] Bognar, M. On the Hahn-Mazurkiewicz theorem. Acta Math. Hungar. 102 (2004), no. 1-2, 37–83.
[9] Dugundji, J. An extension of Tietze’s theorem. Pacific J. Math. 1 (1951), 353–367.

Cite
ACS Style
Kushnir, A.S.; Maslyuchenko, O.V. Pairs of Hahn and separately continuous function. Bukovinian Mathematical Journal. 2021, 9 https://doi.org/https://doi.org/10.31861/bmj2021.01.18
AMA Style
Kushnir AS, Maslyuchenko OV. Pairs of Hahn and separately continuous function. Bukovinian Mathematical Journal. 2021; 9(1). https://doi.org/https://doi.org/10.31861/bmj2021.01.18
Chicago/Turabian Style
Anastasia Serhiivna Kushnir, Oleksandr Volodymyrovych Maslyuchenko. 2021. "Pairs of Hahn and separately continuous function". Bukovinian Mathematical Journal. 9 no. 1. https://doi.org/https://doi.org/10.31861/bmj2021.01.18
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings