[1] Tong, H. Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289–292.
[2] Katetov, M. On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85–91.
[3] Voloshin, G. A., Maslyuchenko, V. K.; Mel’nik, V. S. Hahn pairs and a zero inverse problem. (in Ukrainian) Mat. Stud. 48 (2017), no. 1, 74–81.
[4] T. Jech, Set Theory, Springer-Verlag Heldermann Verlag, Berlin, 2003.
[5] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
[6] Juhasz, I. Cardinal functions in topology—ten years later. Second edition. Mathematical Centre Tracts, 123. Mathematisch Centrum, Amsterdam, 1980. iv+160 pp.
[7] Bourbaki, N. Elements de mathematique. VIII. Premiere partie: Les structures fondamentales de l’analyse. Livre III: Topologie generale. Chapitre IX: Utilisation des nombres reels en topologie generale. (in French) Actualites Sci. Ind., no 1045. Hermann et Cie., Paris, 1948. ii+101+ii pp.
[8] Bognar, M. On the Hahn-Mazurkiewicz theorem. Acta Math. Hungar. 102 (2004), no. 1-2, 37–83.
[9] Dugundji, J. An extension of Tietze’s theorem. Pacific J. Math. 1 (1951), 353–367.
- ACS Style
- Kushnir, A.S.; Maslyuchenko, O.V. Pairs of Hahn and separately continuous function. Bukovinian Mathematical Journal. 2021, 9 https://doi.org/https://doi.org/10.31861/bmj2021.01.18
- AMA Style
- Kushnir AS, Maslyuchenko OV. Pairs of Hahn and separately continuous function. Bukovinian Mathematical Journal. 2021; 9(1). https://doi.org/https://doi.org/10.31861/bmj2021.01.18
- Chicago/Turabian Style
- Anastasia Serhiivna Kushnir, Oleksandr Volodymyrovych Maslyuchenko. 2021. "Pairs of Hahn and separately continuous function". Bukovinian Mathematical Journal. 9 no. 1. https://doi.org/https://doi.org/10.31861/bmj2021.01.18