Перейти до основного вмісту
On separate order continuity of orthogonally additive operators
Krasikova Iryna Volodymyrivna 1 , Pliev M. A. 2 , Popov Mykhailo Mykhailovych 3,4 , Fotiy Olena Georgiivna 4
1 Department of Fundamental and Applied Mathematics, Zaporizhzhya National University, Zaporizhzhia region, Zaporizhzhya, 69061, Ukraine
2 Southern Mathematical Institute of the Russian Academy of Sciences, R, 0, R
3 Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76000, Ukraine
4 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: vector lattice, Riesz space, orthogonally additive operator, order continuous operator
Abstract
Our main result asserts that, under some assumptions, the uniformly-to-order continuity of an order bounded orthogonally additive operator between vector lattices together with its horizontally-to-order continuity implies its order continuity (we say that a mapping $f : E → F$ between vector lattices $E$ and $F$  is horizontally-to-order continuous provided $f$  sends laterally  increasing order convergent nets in $E$ to order convergent nets in $F$, and $f$  is uniformly-to-order continuous provide $f$  sends uniformly convergent nets to order convergent nets).
References

[1] Abramovich Yu., Sirotkin G. On order convergence of nets. Positivity, 2005, 9 (3), 287–292. DOI 10.1007/s11117-004-7543-x
[2] Aliprantis C. D., Border K. C. Infinite Dimensional Analysis, 3-d Ed., Springer-Verlag, Berlin-Heidelberg, 2006.
[3] Aliprantis C. D., Burkinshaw O. Positive Operators, Springer, Dordrecht, 2006.
[4] Krasikova I., Pliev M., Popov M. Measurable Riesz spaces. Carpathian Math. Publ., 2021, 13 (1), 81-88. DOI 10.15330/cmp.13.1.81-88
[5] Mazon J. M., Segura de Leon S. Order bounded ortogonally additive operators. Rev. Roumane Math. Pures Appl., 1990, 35 (4), 329–353. MR1082516
[6] Mykhaylyuk V., Pliev M., Popov M. The lateral order on Riesz spaces and orthogonally additive operators. Positivity, 2021, 25 (2), 291-327. DOI 10.1007/s11117-020-00761-x
[7] Pliev M. A., Ramdane K. Order unbounded orthogonally additive operators in vector lattices. Medi- terranean J. Math., 2018, 15 (2), Paper No. 55, 20 pp. DOI 10.1007/s00009-018-1100-5
[8] Popov M. Horizontal Egorov property of Riesz spaces. Proc. Amer. Math. Soc., 2021, 149 (1), 323–332. DOI: 10.1090/proc/15235.
[9] Popov M. Banach lattices of orthogonally additive operators. Preprint.

Cite
ACS Style
Krasikova, I.V.; Pliev, M.A.; Popov, M.M.; Fotiy, O.G. On separate order continuity of orthogonally additive operators. Bukovinian Mathematical Journal. 2021, 9 https://doi.org/https://doi.org/10.31861/bmj2021.01.17
AMA Style
Krasikova IV, Pliev MA, Popov MM, Fotiy OG. On separate order continuity of orthogonally additive operators. Bukovinian Mathematical Journal. 2021; 9(1). https://doi.org/https://doi.org/10.31861/bmj2021.01.17
Chicago/Turabian Style
Iryna Volodymyrivna Krasikova, M. A. Pliev, Mykhailo Mykhailovych Popov, Olena Georgiivna Fotiy. 2021. "On separate order continuity of orthogonally additive operators". Bukovinian Mathematical Journal. 9 no. 1. https://doi.org/https://doi.org/10.31861/bmj2021.01.17
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings