Перейти до основного вмісту
Nonlinear model of the three-components competitive adsorption using Langmuir equilibrium
Petryk Myhaylo 1 , Boyko Igor 1 , Shynkaryk Mykola Ivanovich 2 , Petryk Oksana 3
1 Department of software engineering, Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
2 Department of applied mathematics, West Ukrainian National University, Ternopil, 46009, Ukraine
3 Department of computer systems and networks, Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
Keywords: competitive adsorption, nanoporous medium, diffusion coefficient, competitive Langmuir equilibrium, Heaviside operating method, high-performance calculations
Abstract

A basis for the mathematical modeling of non-isothermal gas competitive adsorption in a porous solid using Langmuir equilibrium is given. High-performance analytical solutions of considered adsorption models based on the Heaviside operating method and Landau’s decomposition and linearization approach of Langmuir equilibrium by expanding into a convergent series in the temperature phase transition point are proposed.
Numerical experiments results based on high-speed computations on multicore computers are presented.

References

[1] Unger N., Bond T.C., Wang J.S., Koch D.M., Menon S., Shindell D.T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci. 2010, 107 (8), 3382–3389. doi:10.1073/pnas.0906548107
[2] Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purication Technology 2012, 107 (2), 126–136. doi:10.1016/j.seppur.2011.10.036
[3] Krisnha R., Van Baten J.M. Investigating the Non-idealities in Adsorption of CO2 -bearing Mixtures in Cation-exchanged Zeolites. Separation and Purification Technology 2018, 206 (11), 208 217. doi:j.seppur.2018.06.009
[4] Santander J., Conner W.C., Jobic H., Auerbach S. Simulating Microwave-Heated Open- Systems: Tuning Competitive Sorption in Zeolites. J. Phys. Chem. B 2009, 113 (42), 13776–13781. doi:10.1021/jp902946g
[5] Hammond K.D., Conner W.C. Analysis of Catalyst Surface Structure by Physical Sorption. Advances in Catalysis. Springer-Verlag, Berlin, 2013.
[6] Karger J., Ruthven D., Theodorou D. Diffusion in Nanoporous Materials. John Wiley and Sons, Hoboken, 2012.
[7] Krishna R. Thermodynamically Consistent Methodology for Estimation of Diffusivities of Mixtures of Guest Molecules in Microporous Materials. ACS Omega 2019, 4 (8), 13520–13529. doi:10.1021/acsomega.9b01873
[8] Leclerc S., Petryk M., Canet D., Fraissard J. Competitive Diffusion of Gases in a Zeolite Using Proton NMR and Slice Selection Procedure. Catalysis Today 2012, 187 (1), 104–107. doi:10.1016/j.cattod.2011.09.007
[9] M. Petryk, M. Ivanchov, S.Leclerc, D. Canet and J. Fraissard. Competitive Adsorption and Diffusion of Gases in a Microporous Solid. IntechOpen Limited, London, 1973. doi: 10.5772/inte- chopen.88138
[10] Petryk M., Leclerc S., D. Canet, Sergienko I.V., Deineka V.S., Fraissard J. The Competitive Diffusion of Gases in a zeolite bed: NMR and Slice Procedure, Modelling and Identification of Parameters The Journal of Physical Chemistry C 2015, 119 (47), 26519—26525. doi:10.1021/acs.jpcc.5b07974
[11] Petryk, M.R., Boyko, I.V., Khimich, O.M., Petryk, M.M. High-Performance Supercomputer Technologies of Simulation of Nanoporous Feedback Systems for Adsorption Gas Purification Cybernetics and Systems Analysis 2020, 56 (5), 835—847. doi:10.1007/s10559-020-00304-y
[12] Petryk M., Khimitch A., Petryk M.M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel Fuel 2019, 239 (1), 1324—1330. doi:10.1016/j.fuel.2018.10.134
[13] Khimitch A., Petryk M., Mykhalyk D., Boyko I., Popov O., Sydoruk V. Methods of the mathematical modeling and identification of complex processes and systems based on highly productive computing. National Academy of Sciences of Ukraine.Glushkov Institute of Cybernetics, Kyiv, 2019.
[14] Lavrentiev M.A., Shabat B.V. Methods of theory of functions of a complex variable. Nauka, Moscow, 1973.
[15] V. V. Stepanov. Course of the Differential Equations. GIFML, Moscow, 1958.

Cite
ACS Style
Petryk, M.; Boyko, I.; Shynkaryk, M.I.; Petryk, O. Nonlinear model of the three-components competitive adsorption using Langmuir equilibrium. Bukovinian Mathematical Journal. 2021, 9
AMA Style
Petryk M, Boyko I, Shynkaryk MI, Petryk O. Nonlinear model of the three-components competitive adsorption using Langmuir equilibrium. Bukovinian Mathematical Journal. 2021; 9(1).
Chicago/Turabian Style
Myhaylo Petryk, Igor Boyko, Mykola Ivanovich Shynkaryk, Oksana Petryk. 2021. "Nonlinear model of the three-components competitive adsorption using Langmuir equilibrium". Bukovinian Mathematical Journal. 9 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings