Перейти до основного вмісту
About one class of functions with fractal properties
Pratsiovytyi Mykola 1,2 , Goncharenko Yanina 2 , Dmytrenko Sergey Oleksandrovich 3 , Lysenko Iryna 2 , Ratushniak Sofiya 1,2
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
3 Scientific and organizational department, National Academy of Educational Sciences of Ukraine, Kyiv, 04053, Ukraine
Keywords: $Q_2$-representation of numbers, $Q_2$-cylinder, main metric relation, set of incomplete sums of series, quasi-exponential function, singular function, exponential distribution on a segment, function with fractal properties, fractal Hausdorf-Bezikovich dimension
Abstract

We consider one generalization of functions, which are called as «binary self-similar functions» by Bl. Sendov. In this paper, we analyze the connections of the object of study with well known classes of fractal functions, with the geometry of numerical series, with distributions of random variables with independent random digits of the two-symbol $Q_2$-representation, with theory of fractals. Structural, variational, integral, differential and fractal properties are studied for the functions of this class.

References

[1] Albeverio S., Pratsiovytyi M., Torbin G. Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension // Ergod.Th. & Dynam. Sys., 2004, 24, 1–16.
[2] Chatterji S.D. Certain induced measures on the unit interval // Journal London Math. Soc., 1963, 38, 325–331.
[3] Kakeya S. On the partial sums of an infinite series // Tohoku Sci Rep., 1914. 3, №4, 159–164.
[4] Guthrie J.A., Nymann J.E. The topological structure of the set of subsums pf an infinite series// Collog. Math., 1988, 55, №2, 323–327.
[5] Markitan V. P., Pratsiovytyi M. V., Savchenko I. O. Superfractality of the set of incomplete sums of one positive series // Ukr. Mat. Zh., 2018, 70, № 10, 1403–1416.
[6] Marsaglia G. Random variables with independent binary digits // Ann. Math. Statist., 1971, 42, No 2, 1922-1929.
[7] Nymann J.E., Saenz R.A. On the paper of Guthrie and Nymann on subsums of infinite series // The topological structure of the set of subsums pf an infinite series// Collog. Math., 1995, 68, 259–264.
[8] Pratsiovytyi M., Makarchuk O., Karvatsky D. Lebesgue structure of asymmetric Bernoulli convolution based on Jacobsthal–Lucas sequence, Random operators and stochastic equations// Random Oper. Stoch. Equ., 2020, 28(2), 123–130.
[9] Salem R. On some singular monotonic functions which are strigly increasing // Trans. Amer. Math. Soc., 1943, 53, 423-439.
[10] Vynnyshyn Ya., Markitan V., Pratsiovytyi M., Savchenko I. Positive series whose sets of incomplete sums are Cantorvals// Proceedings of the International Geometry Center, 2019, 12(2), 26–42. (in Ukrainian)
[11] Sendov Bl. Kh. Binary self-similar fractal functions// Fundamentalnaya i prikladnaya matematika, 1999, vol. 5, № 2, 589–595. (in Russian)
[12] Pratsiovytyi M.V. Geometry of the classic binary representation of real numbers. — Kyiv: Nats. Pedagog. Mykhailo Dragomanov Univ., 2012. (in Ukrainian)
[13] Pratsiovytyi M.V. Fractal approach to the study of singular distributions — Kyiv: Nats. Pedagog. Mykhailo Dragomanov Univ., 1998. (in Ukrainian)
[14] Pratsiovytyi M.V. Random variables with independent Q2-symbols// Asymptotic Methods in the Study of Stochastic Models, Inst. Math. Nation. Acad. Sci. Ukraine, Kyiv, 1987, 92–102. (in Russian)
[15] Pratsiovytyi M.V., Ratushniak S.P. Independent digits of Q2-representation of random variable with a given distribution // Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine, 2019, vol. 16, № 3, 79–91. (in Ukrainian)
[16] Pratsiovytyi M.V., Ratushniak S.P. Continuous nowhere monotone nondifferentiable function with fractal properties defined in terms Q2-representation // Nonlinear oscillations, 2020, Vol. 23, № 2, 231–252. (in Ukrainian)

Cite
ACS Style
Pratsiovytyi, M.; Goncharenko, Y.; Dmytrenko, S.O.; Lysenko , I.; Ratushniak, S. About one class of functions with fractal properties. Bukovinian Mathematical Journal. 2021, 9 https://doi.org/https://doi.org/10.31861/bmj2021.01.23
AMA Style
Pratsiovytyi M, Goncharenko Y, Dmytrenko SO, Lysenko I, Ratushniak S. About one class of functions with fractal properties. Bukovinian Mathematical Journal. 2021; 9(1). https://doi.org/https://doi.org/10.31861/bmj2021.01.23
Chicago/Turabian Style
Mykola Pratsiovytyi, Yanina Goncharenko, Sergey Oleksandrovich Dmytrenko, Iryna Lysenko , Sofiya Ratushniak. 2021. "About one class of functions with fractal properties". Bukovinian Mathematical Journal. 9 no. 1. https://doi.org/https://doi.org/10.31861/bmj2021.01.23
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings