Перейти до основного вмісту
Abstract second order differential equations with two small parameters and lipschitzian nonlinearities
Perjan Andrei 1 , Rusu Galina 1
1 Department of Mathematics, Moldova state university, Chishnau, MD-2009, RepublicofMoldova
Keywords: singular perturbation, abstract second order Cauchy problem, lipschitzian nonlinearity, a priori estimate
Abstract

In a real Hilbert space $H$ we consider the following singularly perturbed Cauchy problem $\varepsilon\,u''_{\varepsilon\delta}(t)+ \delta\,u'_{\varepsilon\delta}(t)+Au_{\varepsilon\delta}(t)+B(u_{\varepsilon\delta}(t))= f(t),\quad t\in(0,T),\,\, u_{\varepsilon\delta}(0)=u_0,\,\,u'_{\varepsilon\delta}(0)=u_1,$   where $u_0, u_1\in H$, $f:[0,T]\mapsto H,$ $\varepsilon,$ $\delta$ are two small parameters, $A$ is a linear self-adjoint operator and $B$ is a nonlinear lipschitzian operator. We study the behavior of solutions $u_{\varepsilon\delta}$ in two different cases: $\varepsilon\to 0$ and $\delta \geq \delta_0>0;$ $\varepsilon\to 0$ and $\delta \to 0,$ relative to solution to the corresponding unperturbed problem.

References

[1] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer-Verlag, New York, 2010.
[2] K. J. Engel, On singular perturbations of second order Cauchy problems, Pacific J. Math., 152(1992), no. 1, 79-91.
[3] H. O. Fattorini, The hyperbolic singular perturbation problem: an operator approach, J. Differential Equations, 70(1987), no. 1, 1-41.
[4] M. Ghisi and M. Gobbino Global-in-time uniform convergence for linear M.hyperbolic-parabolic singular perturbations, Acta Math. Sinica (English Series), 22(2006), no. 4, 1161-1170.
[5] B. Najman, Time singular limit of semilinear wave equations with damping, J. Math. Anal. Appl., 174, (1993), 95–117.
[6] A. Perjan, Singularly perturbed boundary value problems for evolution differential equations, D.Sc. thesis, Moldova State University, 2008.
[7] A. Perjan, Linear singular perturbations of hyperbolic-parabolic type, Bul. Acad. Stiinte Repub. Mold. Mat., 42(2003), no. 2, 95–112.
[8] A. Perjan and G. Rusu, Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitz nonlinearities, Asymptot. Anal. 97(2016), no. 3-4, 337–349.
[9] A. Perjan and G. Rusu, Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities, Topol. Methods Nonlinear Anal., 54(2019), no. 2B, 1093–1110.

Cite
ACS Style
Perjan, A.; Rusu, G. Abstract second order differential equations with two small parameters and lipschitzian nonlinearities. Bukovinian Mathematical Journal. 2020, 8 https://doi.org/https://doi.org/10.31861/bmj2020.02.083
AMA Style
Perjan A, Rusu G. Abstract second order differential equations with two small parameters and lipschitzian nonlinearities. Bukovinian Mathematical Journal. 2020; 8(1). https://doi.org/https://doi.org/10.31861/bmj2020.02.083
Chicago/Turabian Style
Andrei Perjan, Galina Rusu. 2020. "Abstract second order differential equations with two small parameters and lipschitzian nonlinearities". Bukovinian Mathematical Journal. 8 no. 1. https://doi.org/https://doi.org/10.31861/bmj2020.02.083
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings