In a real Hilbert space $H$ we consider the following singularly perturbed Cauchy problem $\varepsilon\,u''_{\varepsilon\delta}(t)+ \delta\,u'_{\varepsilon\delta}(t)+Au_{\varepsilon\delta}(t)+B(u_{\varepsilon\delta}(t))= f(t),\quad t\in(0,T),\,\, u_{\varepsilon\delta}(0)=u_0,\,\,u'_{\varepsilon\delta}(0)=u_1,$ where $u_0, u_1\in H$, $f:[0,T]\mapsto H,$ $\varepsilon,$ $\delta$ are two small parameters, $A$ is a linear self-adjoint operator and $B$ is a nonlinear lipschitzian operator. We study the behavior of solutions $u_{\varepsilon\delta}$ in two different cases: $\varepsilon\to 0$ and $\delta \geq \delta_0>0;$ $\varepsilon\to 0$ and $\delta \to 0,$ relative to solution to the corresponding unperturbed problem.
[1] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer-Verlag, New York, 2010.
[2] K. J. Engel, On singular perturbations of second order Cauchy problems, Pacific J. Math., 152(1992), no. 1, 79-91.
[3] H. O. Fattorini, The hyperbolic singular perturbation problem: an operator approach, J. Differential Equations, 70(1987), no. 1, 1-41.
[4] M. Ghisi and M. Gobbino Global-in-time uniform convergence for linear M.hyperbolic-parabolic singular perturbations, Acta Math. Sinica (English Series), 22(2006), no. 4, 1161-1170.
[5] B. Najman, Time singular limit of semilinear wave equations with damping, J. Math. Anal. Appl., 174, (1993), 95–117.
[6] A. Perjan, Singularly perturbed boundary value problems for evolution differential equations, D.Sc. thesis, Moldova State University, 2008.
[7] A. Perjan, Linear singular perturbations of hyperbolic-parabolic type, Bul. Acad. Stiinte Repub. Mold. Mat., 42(2003), no. 2, 95–112.
[8] A. Perjan and G. Rusu, Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitz nonlinearities, Asymptot. Anal. 97(2016), no. 3-4, 337–349.
[9] A. Perjan and G. Rusu, Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities, Topol. Methods Nonlinear Anal., 54(2019), no. 2B, 1093–1110.
- ACS Style
- Perjan, A.; Rusu, G. Abstract second order differential equations with two small parameters and lipschitzian nonlinearities. Bukovinian Mathematical Journal. 2020, 8 https://doi.org/https://doi.org/10.31861/bmj2020.02.083
- AMA Style
- Perjan A, Rusu G. Abstract second order differential equations with two small parameters and lipschitzian nonlinearities. Bukovinian Mathematical Journal. 2020; 8(1). https://doi.org/https://doi.org/10.31861/bmj2020.02.083
- Chicago/Turabian Style
- Andrei Perjan, Galina Rusu. 2020. "Abstract second order differential equations with two small parameters and lipschitzian nonlinearities". Bukovinian Mathematical Journal. 8 no. 1. https://doi.org/https://doi.org/10.31861/bmj2020.02.083