In the paper we study cardinality of the set $P_c$ of continuous on $[0,1]$ functions preserving digit 1 in three-symbol self-similar $Q_3$-representation of a number. This representation generalizes the classic ternary representation: $x=\sum\limits_{k=1}^{\infty} 3^{-k}\alpha_k(x) \equiv\Delta^{3}_{\alpha_1 \alpha_2 \ldots \alpha_n \ldots}$, where $\alpha_n(x) \in A_3\equiv\{0,1,2\}$.
All functions from class $P_c$ are given in the following form:
$y = f(x) = f(\Delta^{Q_3}_{\alpha_1(x) \alpha_2(x) \ldots \alpha_n(x) \ldots}) = \Delta^{Q_3}_{γ_1 γ_2 \ldots γ_n \ldots},$ where $a_n ∈ A_3, γ_n ∈ A_3,$
$x = \Delta^{Q_3}_{\alpha_1(x) \alpha_2(x) \ldots \alpha_n(x) \ldots} ≡ β_{\alpha_1(x)} + \sum\limits_{k=2}^∞[β_{\alpha_k(x)}\prod\limits_{j =1}^{k-1} q_{\alpha_j(x)}]$
and $\gamma_n= \gamma_n(\alpha_1(x), \alpha_2(x), \ldots, \alpha_n(x))$ but $\gamma_n =1$ if and only if $\alpha_n(x) =1$.
We prove that $P_c$ is a continuum set. Analytical expression for functions from class $P_c$ are obtained. Their variational and integral properties are also studied.
[1] Pratsiovytyi M. Fractal approach to investigations of singular distributions, National Pedagogical Dragomanov University, Kyiv, 1998. (in Ukrainian)
[2] Turbin A.F., Pratsiovytyi M.V. Fractal sets, functions and distributions, Naukova Dumka, Kyiv, 1992. (in Russian)
[3] Pratsiovytyi M., Vasylenko N. Fractal properties of functions defined in terms of $Q$-representation. Int. J. of Math. Anal. 2013, 7(64), 3155-3169. doi:10.12988/ijma.2013.311278
[4] Zamriy I.V., Pratsiovytyi M.V. Singularity of the digit inversor in $Q_3$-representation of the fractional part of a real number, its fractal and integral properties. Nonlinear oscil. 2015, 18(1), 55-70. (in Ukrainian)
[5] Pratsiovytyi M.V., Zamriy I.V. Inversor of digits of $Q_3$-representation for fractional part of real number as a solution of the system of three functional equations. Naukovyi Chasopys NPU im. M.P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky 2013, 15, 156-167. (in Ukrainian)
[6] Pratsiovytyi M.V., Zamriy I.V. Continuous functions preserving digit 1 $Q_3$-representation of a number.Bukovinian Math. J. 2015, 3(3-4), 142-159. (in Ukrainian)
[7] Pratsiovytyi M.V., Kalashnikov A.V. On One Class of Continuous Functions with Complicated Local Structure, Most of which are Singular or Nondifferentiable. Trudy IPMM NAN Ukrainy 2011, 23, 179-189. (in Ukrainian)
[8] Pratsiovytyi M.V., Kalashnikov A.V. Self-Affine Singular and Nowhere Monotone Functions Related to the $Q$-Representation of Real Numbers. Ukr. Math. J. 2013, 65(3), 405-417. (in Ukrainian)
[9] Pratsiovytyi M. Distributions of random variables with independent $Q$-symbols, Asymptotic and applied problems in the theory of random evolutions 1990, 92-101. (in Russian)
- ACS Style
- Pratsiovytyi, M.; Vasylenko, N.A.; Maslova, Y.P. Cardinality of the set of continuous functions preserving digit 1 of $Q_3$-representation of a number. Bukovinian Mathematical Journal. 2019, 7 https://doi.org/https://doi.org/10.31861/bmj2019.01.069
- AMA Style
- Pratsiovytyi M, Vasylenko NA, Maslova YP. Cardinality of the set of continuous functions preserving digit 1 of $Q_3$-representation of a number. Bukovinian Mathematical Journal. 2019; 7(1). https://doi.org/https://doi.org/10.31861/bmj2019.01.069
- Chicago/Turabian Style
- Mykola Pratsiovytyi, Natalya Anatolyivna Vasylenko, Yuliya Petrovna Maslova. 2019. "Cardinality of the set of continuous functions preserving digit 1 of $Q_3$-representation of a number". Bukovinian Mathematical Journal. 7 no. 1. https://doi.org/https://doi.org/10.31861/bmj2019.01.069