Перейти до основного вмісту
Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them
Banakh Taras Onufriyovych 1 , Prykarpatsky Anatoliy Karolyovych 2,3
1 Department of Algebra, Topology and Fundamentals of Mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
2 Department of Economic Cybernetics, Drohobych Ivan Franko state Pedagogical University, Drohobych, 82100, Ukraine
3 University of Mining and Metallurgy, Krakow, 30-059, Poland
Keywords: Hamiltonian systems, Lagrangian manifolds, homeomorphism, criterion of homeomorphism
Abstract
The orbits of sslowly perturbed non-autonomous Hamiltonian systems and associated with them ergodic deformations of the Lagrangian manifolds are studied. Main results are based on teh J. Mather approach [18, 19] to constructing homologies of invariant probabilistic measures, mini- mizining some Lagrangian functionals, as well as on the Gromov-Salamon-Zehnder-Floer elliptic theory [7,9,12,20,26] of constructing invariant manifolds. There are built invariant submanifolds, which supporting invariant ergodic measures and having the metric space structure, allowing locally homeomorphic mappings. The problem of constructing effective criteria of their global homerphicity, posed by A.M. Samoilenko at studying ergodic deformations of nonlinear Hamiltonian systemns amd their adiabatic invariants, is analyzed. It is stated that a mapping $f:X→Y$ from a linearly connected Hausdorf space $X$ in one-connected (in particularly, contractable space) space $Y$ is a homomorphism if $f$ is a local homeomorphism and preimage $f^{-1}(y)$ of every point $y∈Y$ is a non empty compact set in $X$.
References

Abraham R., J. Marsden J. Foundations of Mechanics. Commings, USA, 1978, 806p.

Aebischer B., Borer M. et al. Symplectic geometry: Introductory course. - Basel: Birkhauses Verlag, Basel, 1992. - P.79-165.

Arnold V.I. A note on Weierstrass' auxiliary theorem // Functional Analysis and Its Applications. -1967. -1, N3. -P. 173-179.

https://doi.org/10.1007/BF01076901

Arnold V.I. Mathematical methods of classical mechanics. - M: Science, 1989. - 408 C.

https://doi.org/10.1007/978-1-4757-2063-1

Banakh I., Banakh T., Plichko A., Prykarpatsky A., On local convexity of nonlinear mappings between Banach spaces // Cent. Eur. J. Math. - 2012. -10, N6. - P. 2264-2271.

https://doi.org/10.2478/s11533-012-0101-z

R.E. Edwards R.E., Functional analysis . - New York: Holt, Rinehart and Winston Publ., 1965. - 1071 P.

Eliashberg Y., Givental A., Hofer H.. Introduction to Symplectic Field Theory, In: Alon N., Bourgain J., Connes A., Gromov M., Milman V. (eds) Visions in Mathematics. Modern Birkhauser Classics. - Basel: Birkhauser, 2000. - P.560-673.

https://doi.org/10.1007/978-3-0346-0425-3_4

Erve M. Functions of many variables. - M .: Mir, 1985. - 164 C.

Floer A. Morse theory for Lagrangian intersections // J. Diff. Geom. - 1988. - 28 - P.513-547.

https://doi.org/10.4310/jdg/1214442477

Halmosh P.R. Lectures on the ergodic theory. - Tokio: Math. Soc. of Japan Publ., 1956. - 147 P.

A. Hatcher, Algebraic Topology, Cambdidge Univ. Press, 2002.

Hofer H. Lusternik-Schnirelman theory for Lagrangian intersections // Ann. Inst. Henri Poincare. -1968. - 5. - P. 456-499.

https://doi.org/10.1016/S0294-1449(16)30339-0

Kantorovich L.V., Akilov G.P. Functional analysis. -M.: Nauka, 1977. -740 C.

Katok A.B., Hasselblat B. Introduction to the modern theory of dynamical systems. - M .: Factorial, 1999. - 767 C.

Kornfeld I.P., Sinai Ya.G., Fomin S.V. Ergodic theory. - M .: Science, 1980. - 383 C.

Kryloff N.M., Bogoliubov N.N. La theorie generale de la mesure et son application 'a l'etude des systemes dynamiques de la mechanique nonlineaire.-Ann.Math.-1937.-II,N38.-P.65-113.

https://doi.org/10.2307/1968511

Mane R. On the minimizing measures of Lagrangian dynamical systems. -1992. - Nonlinearity. -5. - P. 623-638.

https://doi.org/10.1088/0951-7715/5/3/001

Mather J.N., Action minimizing measures for positive definite Lagrangian systems. - Math.Zeitschr.. -1991. -207. -P. 169-207.

https://doi.org/10.1007/BF02571383

Mather J. Variational construction of connecting orbits. -Ann.Inst.Fourier, Grenoble. -1993. -43, N5. -P. 1349-1386.

https://doi.org/10.5802/aif.1377

McDuff D., Elliptic methods in symplectic geometry. -Bull. AMS. -1990. -23. - P. 311-358.

https://doi.org/10.1090/S0273-0979-1990-15928-2

Nemytskii V.V., Stepanov V.V. Qualitative theory of differential equations. - M .: Gostekhizdat, 1949. - 550 C.

Prykarpatsky A.K. Symplectic field theory approach to studing ergodic measures related with nonautonomous Hamiltonian systems. -Univ. Iagellonicae Acta Math. -2004. - P. 123-138.

Palais R.S. Natural operations on differential forms. - Trans. Amer. Math. Soc.. -1959. -92. - P. 125-141.

https://doi.org/10.2307/1993171

Prykarpats'kyi Ya.A. Symplectic approach to constructing ergodic measures. - Ukrainian MathematicalJournal.-2006.-58,N5.-P.763- -778.

https://doi.org/10.1007/s11253-006-0100-y

Prykarpats'kyi Ya.A. Mel'nikov-Samoilenko adiabatic stability problem. - Ukrainian Mathematical Journal. -2006. -58, N6. - P. 887-903.

https://doi.org/10.1007/s11253-006-0111-8

Salamon D., Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. - Comm. Pure Appl. Math. - 1992. -45. -P. 1303-1360.

https://doi.org/10.1002/cpa.3160451004

Samoilenko A.M. Elements of the Mathematical Theory of Multi-Frequency Oscillations, (Mathematics and its Applications). - Amsterdam: Kluwer Publisher, 1991. -325 P.

https://doi.org/10.1007/978-94-011-3520-7

Samoilenko A.M., Prykarpats'kyi A.K., Samoilenko V.H. Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems. - Ukrainian Mathematical Journal. -2003. -55, N1. - P. 82-92.

https://doi.org/10.1023/A:1025072619144

Cite
ACS Style
Banakh, T.O.; Prykarpatsky, A.K. Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them. Bukovinian Mathematical Journal. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.008
AMA Style
Banakh TO, Prykarpatsky AK. Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them. Bukovinian Mathematical Journal. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.008
Chicago/Turabian Style
Taras Onufriyovych Banakh, Anatoliy Karolyovych Prykarpatsky. 2019. "Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them". Bukovinian Mathematical Journal. 6 no. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.008
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings