Abraham R., J. Marsden J. Foundations of Mechanics. Commings, USA, 1978, 806p.
Aebischer B., Borer M. et al. Symplectic geometry: Introductory course. - Basel: Birkhauses Verlag, Basel, 1992. - P.79-165.
Arnold V.I. A note on Weierstrass' auxiliary theorem // Functional Analysis and Its Applications. -1967. -1, N3. -P. 173-179.
https://doi.org/10.1007/BF01076901
Arnold V.I. Mathematical methods of classical mechanics. - M: Science, 1989. - 408 C.
https://doi.org/10.1007/978-1-4757-2063-1
Banakh I., Banakh T., Plichko A., Prykarpatsky A., On local convexity of nonlinear mappings between Banach spaces // Cent. Eur. J. Math. - 2012. -10, N6. - P. 2264-2271.
https://doi.org/10.2478/s11533-012-0101-z
R.E. Edwards R.E., Functional analysis . - New York: Holt, Rinehart and Winston Publ., 1965. - 1071 P.
Eliashberg Y., Givental A., Hofer H.. Introduction to Symplectic Field Theory, In: Alon N., Bourgain J., Connes A., Gromov M., Milman V. (eds) Visions in Mathematics. Modern Birkhauser Classics. - Basel: Birkhauser, 2000. - P.560-673.
https://doi.org/10.1007/978-3-0346-0425-3_4
Erve M. Functions of many variables. - M .: Mir, 1985. - 164 C.
Floer A. Morse theory for Lagrangian intersections // J. Diff. Geom. - 1988. - 28 - P.513-547.
https://doi.org/10.4310/jdg/1214442477
Halmosh P.R. Lectures on the ergodic theory. - Tokio: Math. Soc. of Japan Publ., 1956. - 147 P.
A. Hatcher, Algebraic Topology, Cambdidge Univ. Press, 2002.
Hofer H. Lusternik-Schnirelman theory for Lagrangian intersections // Ann. Inst. Henri Poincare. -1968. - 5. - P. 456-499.
https://doi.org/10.1016/S0294-1449(16)30339-0
Kantorovich L.V., Akilov G.P. Functional analysis. -M.: Nauka, 1977. -740 C.
Katok A.B., Hasselblat B. Introduction to the modern theory of dynamical systems. - M .: Factorial, 1999. - 767 C.
Kornfeld I.P., Sinai Ya.G., Fomin S.V. Ergodic theory. - M .: Science, 1980. - 383 C.
Kryloff N.M., Bogoliubov N.N. La theorie generale de la mesure et son application 'a l'etude des systemes dynamiques de la mechanique nonlineaire.-Ann.Math.-1937.-II,N38.-P.65-113.
https://doi.org/10.2307/1968511
Mane R. On the minimizing measures of Lagrangian dynamical systems. -1992. - Nonlinearity. -5. - P. 623-638.
https://doi.org/10.1088/0951-7715/5/3/001
Mather J.N., Action minimizing measures for positive definite Lagrangian systems. - Math.Zeitschr.. -1991. -207. -P. 169-207.
https://doi.org/10.1007/BF02571383
Mather J. Variational construction of connecting orbits. -Ann.Inst.Fourier, Grenoble. -1993. -43, N5. -P. 1349-1386.
https://doi.org/10.5802/aif.1377
McDuff D., Elliptic methods in symplectic geometry. -Bull. AMS. -1990. -23. - P. 311-358.
https://doi.org/10.1090/S0273-0979-1990-15928-2
Nemytskii V.V., Stepanov V.V. Qualitative theory of differential equations. - M .: Gostekhizdat, 1949. - 550 C.
Prykarpatsky A.K. Symplectic field theory approach to studing ergodic measures related with nonautonomous Hamiltonian systems. -Univ. Iagellonicae Acta Math. -2004. - P. 123-138.
Palais R.S. Natural operations on differential forms. - Trans. Amer. Math. Soc.. -1959. -92. - P. 125-141.
https://doi.org/10.2307/1993171
Prykarpats'kyi Ya.A. Symplectic approach to constructing ergodic measures. - Ukrainian MathematicalJournal.-2006.-58,N5.-P.763- -778.
https://doi.org/10.1007/s11253-006-0100-y
Prykarpats'kyi Ya.A. Mel'nikov-Samoilenko adiabatic stability problem. - Ukrainian Mathematical Journal. -2006. -58, N6. - P. 887-903.
https://doi.org/10.1007/s11253-006-0111-8
Salamon D., Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. - Comm. Pure Appl. Math. - 1992. -45. -P. 1303-1360.
https://doi.org/10.1002/cpa.3160451004
Samoilenko A.M. Elements of the Mathematical Theory of Multi-Frequency Oscillations, (Mathematics and its Applications). - Amsterdam: Kluwer Publisher, 1991. -325 P.
https://doi.org/10.1007/978-94-011-3520-7
Samoilenko A.M., Prykarpats'kyi A.K., Samoilenko V.H. Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems. - Ukrainian Mathematical Journal. -2003. -55, N1. - P. 82-92.
https://doi.org/10.1023/A:1025072619144
- ACS Style
- Banakh, T.O.; Prykarpatsky, A.K. Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them. Bukovinian Mathematical Journal. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.008
- AMA Style
- Banakh TO, Prykarpatsky AK. Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them. Bukovinian Mathematical Journal. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.008
- Chicago/Turabian Style
- Taras Onufriyovych Banakh, Anatoliy Karolyovych Prykarpatsky. 2019. "Some aspects of ergodic deformations of nonlinear Hamiltonian systems and locally homeomorphic metric spaces associated with them". Bukovinian Mathematical Journal. 6 no. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.008