Перейти до основного вмісту
Separately continuous intermediate functions and cross-topology
Maslyuchenko Volodymyr Kyrylovych 1 , Melnyk Vasyl 2
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: separately continuous functions, approcsimation, Hahn theorem, plus-topology
Abstract
We introduce the notion of separate Hahn’s pair $(g,h)$ on the product $X×Y$ of topological spacesand find the conditions of existance of intermediate separately continuous function $f:X×Y→\mathbb{R}$ for each of these pairs.
References

Hahn H. Uber halbstetige und unstetige Functionen // Sitzungsberichte Akad.Wiss.Wien. Math naturwiss.Kl.Abt.IIa. - 1917. - 126. - S.91-110.

Masliuchenko V.K., Masliuchenko O.V., Melnyk V.S. The existence of intermediate piecewise linear and infinitely differentiable functions // Beech. mate. journ - 2016 - 4, №3-4. - p.93-100.

Dieudonne J. Une g'en'eralisation des espaces compacts // J. de Math. Pyres et Appl. - 1944 - 23. - P.65-76.

Tong H. Some characterizations of normal and perfectly normal spaces // Bull.Amer.Math.Soc. - 1948 - 54. - p.65.

Tong H. Some characterizations of normal and perfectly normal spaces // Duke Math.J. - 1952 - 19th - P.289-292.

https://doi.org/10.1215/S0012-7094-52-01928-5

Katetov M. On real-valued functions in topological spaces // Fund.Math. - 1952 - 38. - p.85-91.

https://doi.org/10.4064/fm-38-1-85-91

Katetov M. Correction to 'On real-valued functions in topological spaces' // Fund.Math. - 1953. - 40. - p.203-205.

https://doi.org/10.4064/fm-40-1-203-205

Masliuchenko V.K., Petei S.P. Rotational boundaries of continuous monotone functions and functions of limited variation // Buk.mat.zhurn.-2015.- 3, № 2. - P. 64-71.

Masliuchenko V.K., Melnyk V.S. Theorems on an intermediate affine function for convex and concave functions // Beech. mate. journ - 2016 - 4, No. 1. - P.110-116.

Cite
ACS Style
Maslyuchenko, V.K.; Melnyk, V. Separately continuous intermediate functions and cross-topology. Bukovinian Mathematical Journal. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.103
AMA Style
Maslyuchenko VK, Melnyk V. Separately continuous intermediate functions and cross-topology. Bukovinian Mathematical Journal. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.103
Chicago/Turabian Style
Volodymyr Kyrylovych Maslyuchenko, Vasyl Melnyk. 2019. "Separately continuous intermediate functions and cross-topology". Bukovinian Mathematical Journal. 6 no. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.103
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings