Перейти до основного вмісту
Integer solutions of an implicit linear difference equation of the second order
Hefter Sergey 1 , Martseniuk V. 1 , Piven Alexei 2
1 Department of Fundamental Mathematics, Karazin's Kharkiv National University, Kharkiv, 61022, Ukraine
2 Department of Applied Mathematics, Karazin's Kharkiv National University, Kharkiv, 61022, Ukraine
Keywords: difference equation, integer solution, criterion, uniqueness of the solution
Abstract

The existence criterion and uniqueness criterion of an integer solution for one implicit second order linear difference equation were obtained. Explicit expression for this solution is given.

References

[1] Borevich Z.I., Shafarevich I.R. Number Theory, Academic Press, Boston, 1966

[2] Gelfond A. O., Calculus of Finite Differences, GIFML, Moscow, 1967 (in Russian)

[3] Gerasimov V., Gefter S., Rybalko A. Implicit linear non-homogeneous functional equation with the operator of Pommeis in the ring Z[[x]] Bukovinian Math. J. 2016, 4 (3–4), 36–39 (in Ukrainian)

[4] Gefter S.L., Goncharuk A.B., Piven’ A.L. Integer solutions for a vector implicit linear difference equation in ZN. Dopov. Nac. akad. nauk Ukr. 2018, (11), 11–18. doi: https://doi.org/10.15407/dopovidi2018.11.011 (in Ukrainian)

[5] Macdonald I.G. Symmetric functions and Hall Polinomials, Clarendon Press, Oxford, 1979.

[6] Berestovski V. N., Nikonorov Yu. G., Continued fractions, the group GL(2,Z) and Pisot numbers. Siberian Advances in Mathematics 2007, 17 (4), 268—290. doi: https://doi.org/10.3103/S1055134407040025

[7] Gefter S., Goncharuk A. Generalized backward shift operators on the ring Z[[x]], Cramer’s rule for infinite linear systems, and p-adic integers. Operator Theory: Advances and Applications, vol 268, 2018, 247–259. doi: https://doi.org/10.1007/978-3-319-75996-8_13

[8] Gerasimov V.A., Gefter S.L., Goncharuk A.B. Application of the p-Adic Topology on Z to the Problem of Finding Solutions in Integers of an Implicit Linear Difference Equation. J. Math. Sci. 2018, 235 (3), 256—261. doi: https://doi.org/10.1007/s10958-018-4072-x

Cite
ACS Style
Hefter, S.; Martseniuk, V.; Piven, . Integer solutions of an implicit linear difference equation of the second order. Bukovinian Mathematical Journal. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.040
AMA Style
Hefter S, Martseniuk V, Piven . Integer solutions of an implicit linear difference equation of the second order. Bukovinian Mathematical Journal. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.040
Chicago/Turabian Style
Sergey Hefter, V. Martseniuk, Alexei Piven. 2019. "Integer solutions of an implicit linear difference equation of the second order". Bukovinian Mathematical Journal. 6 no. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.040
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings