E. Belan and A. M. Samoilenko, "Dynamics of periodic modes of the phenomenological equation of spin combustion", Ukr. Math J., 65, No. 1, 21-46 (2013).
https://doi.org/10.1007/s11253-013-0763-0
N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).
VI Fodchuk and I. I. Klevchuk, "Integral sets and the reduction principle for di ff ereral functional equations", Ukr. Math J., 34, No. 3, 272-277 (1982).
https://doi.org/10.1007/BF01682117
J. Hale, TheoryofFunctionalDi ff erentialEquations, Springer, New York (1977).
I. I. Klevchuk and V. I. Fodchuk, "Bifurcation of singular points of the differential equations-functional equations", Ukr. Math J., 38, No. 3, 281-286 (1986).
https://doi.org/10.1007/BF01056824
I. I. Klevchuk, "On the reduction principle for functional-di ff erential equations of the neutral type", Di ff er. Equ. 35, No. 4, 464-473 (1999).
I.I.Klevchuk, "Homoclinicpointsforasingulyly perturbed system of di ff erential equations with delay", Ukr. Math J., 54, No. 4, 693-699 (2002).
https://doi.org/10.1023/A:1021047730635
I. I. Klevchuk, "Bifurcation of the state of equilibrium in the system of nonlinear parabolic equations with a transformed argument", Ukr. Math J., 51, No. 10, 1521-1524 (1999).
https://doi.org/10.1007/BF02981684
I.I. Klevchuk, "Existence of Countless Many Cyclesinhyperbolicsystemsofdi ff erentialequations with transformed argument", J.Math. Sci., 215, No. 3, 341-349 (2016).
https://doi.org/10.1007/s10958-016-2842-x
I.I. Klevchuk, "Bifurcation of self-excited vibrationsforparabolicsystems with a guardedargument and a weak diffusion", J.Math. Sci., 226, No. 3, 285-295 (2017).
https://doi.org/10.1007/s10958-017-3534-x
E. F. Mishchenko, VA Sadovnichii, A. Yu. Kolesov, and N. Kh. Rozov, Autowave Processes in Nonlinear Media with Di ff usion [in Russian], Fizmatlit, Moscow (2005).
J. Wu, Theory and Applications of a Partial Functional DiFerential Equation, Springer, New York (1996).
- ACS Style
- Klevchuk, I. Existence and stability of traveling waves in parabolic systems with low diffusion. Bukovinian Mathematical Journal. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.084
- AMA Style
- Klevchuk I. Existence and stability of traveling waves in parabolic systems with low diffusion. Bukovinian Mathematical Journal. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.084
- Chicago/Turabian Style
- Ivan Klevchuk. 2019. "Existence and stability of traveling waves in parabolic systems with low diffusion". Bukovinian Mathematical Journal. 6 no. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.084