Перейти до основного вмісту
Existence and stability of traveling waves in parabolic systems with low diffusion
Klevchuk Ivan 1
1 Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: parabolic system, bifurcation, integral manifold, stability, traveling wave
Abstract
We prove the existence of periodic solutions in autonomous parabolic system of differential equations with weak diffusion on the circle. We consider the problem of existence and stability of traveling waves in the Brusselator equations with weak diffusion. We study the existence and stability of an arbitrarily large finite number of cycles for a parabolic system with weak diffusion.
References

E. Belan and A. M. Samoilenko, "Dynamics of periodic modes of the phenomenological equation of spin combustion", Ukr. Math J., 65, No. 1, 21-46 (2013).

https://doi.org/10.1007/s11253-013-0763-0

N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).

VI Fodchuk and I. I. Klevchuk, "Integral sets and the reduction principle for di ff ereral functional equations", Ukr. Math J., 34, No. 3, 272-277 (1982).

https://doi.org/10.1007/BF01682117

J. Hale, TheoryofFunctionalDi ff erentialEquations, Springer, New York (1977).

I. I. Klevchuk and V. I. Fodchuk, "Bifurcation of singular points of the differential equations-functional equations", Ukr. Math J., 38, No. 3, 281-286 (1986).

https://doi.org/10.1007/BF01056824

I. I. Klevchuk, "On the reduction principle for functional-di ff erential equations of the neutral type", Di ff er. Equ. 35, No. 4, 464-473 (1999).

I.I.Klevchuk, "Homoclinicpointsforasingulyly perturbed system of di ff erential equations with delay", Ukr. Math J., 54, No. 4, 693-699 (2002).

https://doi.org/10.1023/A:1021047730635

I. I. Klevchuk, "Bifurcation of the state of equilibrium in the system of nonlinear parabolic equations with a transformed argument", Ukr. Math J., 51, No. 10, 1521-1524 (1999).

https://doi.org/10.1007/BF02981684

I.I. Klevchuk, "Existence of Countless Many Cyclesinhyperbolicsystemsofdi ff erentialequations with transformed argument", J.Math. Sci., 215, No. 3, 341-349 (2016).

https://doi.org/10.1007/s10958-016-2842-x

I.I. Klevchuk, "Bifurcation of self-excited vibrationsforparabolicsystems with a guardedargument and a weak diffusion", J.Math. Sci., 226, No. 3, 285-295 (2017).

https://doi.org/10.1007/s10958-017-3534-x

E. F. Mishchenko, VA Sadovnichii, A. Yu. Kolesov, and N. Kh. Rozov, Autowave Processes in Nonlinear Media with Di ff usion [in Russian], Fizmatlit, Moscow (2005).

J. Wu, Theory and Applications of a Partial Functional DiFerential Equation, Springer, New York (1996).

Cite
ACS Style
Klevchuk, I. Existence and stability of traveling waves in parabolic systems with low diffusion. Bukovinian Mathematical Journal. 2019, 6 https://doi.org/https://doi.org/10.31861/bmj2018.03.084
AMA Style
Klevchuk I. Existence and stability of traveling waves in parabolic systems with low diffusion. Bukovinian Mathematical Journal. 2019; 6(3-4). https://doi.org/https://doi.org/10.31861/bmj2018.03.084
Chicago/Turabian Style
Ivan Klevchuk. 2019. "Existence and stability of traveling waves in parabolic systems with low diffusion". Bukovinian Mathematical Journal. 6 no. 3-4. https://doi.org/https://doi.org/10.31861/bmj2018.03.084
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings