Перейти до основного вмісту
The semigroup of partial cofinite isometries of natural numbers
Gutik Oleg Volodymyrovych 1 , Savchuk Anatolii Serhiyovych 1
1 Department of Algebra, Topology and Fundamentals of Mathematics, Lviv Ivan Franko National University, Lviv, 79000, Ukraine
Keywords: inverse semigroup, Green relations, partial transformation, partial bijection, isometry, bicyclic semigroup, congruence
Abstract

The semigroup $\mathbb{IN}_∞$ of all partial co-finite isometries of positive integers is studied. We describe Green’s relations on the semigroup $\mathbb{IN}_∞$, ts band and proved that $\mathbb{IN}_∞$ is a simple $E$-unitary $F$-inverse semigroup. We described the least group congruence $\mathfrak{C}_{mg}$ on $\mathbb{IN}_∞$ and proved that the quotient-semigroup $\mathbb{IN}_∞$ \ $\mathfrak{C}_{mg}$ is isomorphic to the additive group of integers. An example of a non-group congruence on the semigroup $\mathbb{IN}_∞$ is presented. Also we proved that a congruence on the semigroup $\mathbb{IN}_∞$ is a group congruence if and only if its restriction onto an isomorphic copy of the bicyclic semigroup in $\mathbb{IN}_∞$ is a group congruence

References

[1] Bezuschak, O.O. (2008). Grign's relation to the inverted half-group of partially defined finite-dimensional isometries of a discrete line. Newsletter of the Kiev University. Seriya fiziko-matematicheskaya, 1, 12- 16.

[2] Wagner, V.V. (1952). Generalized groups. Reports of the USSR Academy of Sciences, 84, 1119-1122.

 [3] Gutyk, O., Savchuk, A. (2017). About the half-group $ID_∞$. Newsstand of the Lviv University. Serya Mechanical and Mathematical, 83, 5-19.

[4] Andersen, O. (1952). Ein Bericht uber die Struktur Abstrakter Halbgruppen. PhD thesis. Hamburg,

[5] Anderson, L.W., Hunter, R.P., & Koch, R.J. (1965). Some results on stability in semigroups. Transactions of the American Mathematical Society, 117, 521-529. DOI: 10.1090/S0002-9947-1965-0171869-7.

[6]  Bezushchak, O. (2004). On growth of the inverse semigroup of partially defined co–finite automorphisms of integers. Algebra and Discrete Mathematics, 2, 45–55.

[7] Clifford, A. H., & Preston, G. B. (1961, 1972). The algebraic theory of semigroups. Vol 1 and 2. Providence, RI: American Mathematical Society.

[8] Gutik, O. & Repovš , D. (2011). Topological monoids of monotonic, injective partial selfmaps of $\mathbb{N}$ having a cofinite domain and image. Studia Scientiarum Mathematicarum Hungarica, 48 (3), 342-353.DOI:10.1556/SScMath.48.2011.3.1176

[9] Lawson, M. (1998). Inverse semigroups. The theory of partial symmetries. Singapore: World Scientific.

[10] McFadden, R., & O'Carroll, L. (1971). $F$-inverse semigroups. Proceedings of the London Mathematical Society, Series III, 22 (4), 652-666. DOI:10.1112/plms/s3-22.4.652

[11] Petrich, M. (1984). Inverse semigroups. New York, NY: John Wiley & Sons.

Cite
ACS Style
Gutik, O.V.; Savchuk , A.S. The semigroup of partial cofinite isometries of natural numbers. Bukovinian Mathematical Journal. 2018, 6 https://doi.org/https://doi.org/10.31861/bmj2018.01.042
AMA Style
Gutik OV, Savchuk AS. The semigroup of partial cofinite isometries of natural numbers. Bukovinian Mathematical Journal. 2018; 6(1-2). https://doi.org/https://doi.org/10.31861/bmj2018.01.042
Chicago/Turabian Style
Oleg Volodymyrovych Gutik, Anatolii Serhiyovych Savchuk . 2018. "The semigroup of partial cofinite isometries of natural numbers". Bukovinian Mathematical Journal. 6 no. 1-2. https://doi.org/https://doi.org/10.31861/bmj2018.01.042
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings