Перейти до основного вмісту
The Newton-Kantorovich method in theory of nonlinear intergo-differential boundary value problem
Chechetenko V. O. 1 , Chuiko Oleksiy Serhiyovych 1 , Chuiko Sergey Mykhailovych 2
1 Donbass State Pedagogical University, Slaviansk, 84116, Ukraine
2 Department of Mathematics and Informatics, Donbass State Pedagogical University, Slaviansk, 84116, Ukraine
Keywords: a nonlinear integral-differential boundary value problem, Newton-Kantorovich method, the conditions of convergence
Abstract
Structural conditions for the existence of a nonlinear integral-differential boundary value problem are found. An iterative scheme with quadratic convergence is constructed to find the solution of a nonlinear integral differential boundary value problem based on the modification of the Newton-Kantorovich method. In order to justify the quadratic convergence of the modified Newton- Kantorovich method in the case of an undefined system, the original conditions of convergence are proposed.
References

[1] Boichuk A.A., Samoilenko A.M. Generalized inverse operator and Fredholm boundary-value problems. - Utrecht; Boston: VSP, 2004. - XIV - 317 pp.

[2] Samoylenko A.M., Boichuk O. A., Krivoshey SA Critical problems for systems of linear integral-differential equations of the Fredholm type with a degenerate kernel // Ukr. mate. journ - 1996, № 48, №11. - P. 1576 - 1579.

[3] Bogolyubov N.N., Mitropolsky Yu.A., Samoilenko A.M. The method of accelerated convergence in nonlinear mechanics. - Kyiv: Science. thought, 1969. - 248 c.

[4] Kantorovich L.V., Akilov G.P. Functional analysis. - M .: Science. - 1977 - 744 pp.

[5] Dannis J., Schnabel R. Numerical methods of unconditional optimization and solution of nonlinear equations. - M .: Peace. - 1988 - 440 p.

[6] Chuiko S.M. Nonlinear matrix di ff erentialalgebraic boundary value problem // Lobachevskii Journal of Mathematics. - 2017 - 38 (2). - P.236 - 244.

[7] Chuiko S. Weakly nonlinear boundary value problem for a matrix di ff erential equation // Miskolc Mathematical Notes. - 2016 - 17, No. 1. - P. 139-150.

[8] Boichuk A.A., Holovats'ka I.A. Boundary value problems for systems of integrodi ff erential equations // Journal of Mathematical Sciences. - 2014 - 203. - No. 3, pp. 306 - 321.

[9] Chuiko S.M. On solvability of a matrix boundary value problem // Itogi of science and technology. Modern mathematics and its applications. Thematic reviews. - 2017 - 132 - C.140 - 144.

[10] Campbell S.L. Singular Systems of Di ff erential Equations. - San Francisco - London - Melbourne: Pitman Advanced Publishing Program. - 1980 - 178 p.

[11] Boichuk A.A., Pokutnyi A.A., Chistyakov V.F. Applicationof perturbationtheorytothesolvability analysis of di ff erential algebraic equations // Computational Mathematics and Mathematical Physics. - 2013. - 53. - №6. - P. 777 - 788.

[12] Chuiko S.M. A generalized matrix of differential equations. Journal of Mathematical Sciences (N.Y.). - 2015 - 210, № 1. - P. 9 - 21.

[13] Tikhonov A.N., Arsenin V.Ya. Methods for dealing with incorrect tasks. - M .: Nauka, - 1986. - 288 p.

[14] Chuiko S.M., Chuiko O.V. Regularization of the periodic boundary value problem with impulse influence // Bukovinsky Mathematical Journal. - 1. No. 3 - 4, 2013. p. 158 - 161.

[15] Chuiko S.M. On the regularization of a matrix differential-algebraic boundary-value problem // Journal of Mathematical Sciences. - 2017 - 220, №5. - P. 591 - 602.

[16] Bigun Ya.Y. The existence of a solution and averaging of non-linear multi-frequency problems with a problem // Ukr. mate. journ - 2007. - 59, No. 4. - P. 435 - 446.

[17] Chuiko S.M., Chuiko A.S. On the approximate solution of periodic boundary value problems with delay by the least squares method in the critical case // Nonlinear Oscillations (N.Y.) - 14. - 2012. No. 3. P. 445-460.

Cite
ACS Style
Chechetenko, V.O.; Chuiko, O.S.; Chuiko, S.M. The Newton-Kantorovich method in theory of nonlinear intergo-differential boundary value problem. Bukovinian Mathematical Journal. 2018, 6 https://doi.org/ https://doi.org/10.31861/bmj2018.01.122
AMA Style
Chechetenko VO, Chuiko OS, Chuiko SM. The Newton-Kantorovich method in theory of nonlinear intergo-differential boundary value problem. Bukovinian Mathematical Journal. 2018; 6(1-2). https://doi.org/ https://doi.org/10.31861/bmj2018.01.122
Chicago/Turabian Style
V. O. Chechetenko, Oleksiy Serhiyovych Chuiko, Sergey Mykhailovych Chuiko. 2018. "The Newton-Kantorovich method in theory of nonlinear intergo-differential boundary value problem". Bukovinian Mathematical Journal. 6 no. 1-2. https://doi.org/ https://doi.org/10.31861/bmj2018.01.122
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings