Перейти до основного вмісту
The boundary value Dirichlet problem for parabolic equation with a pulse effect
Yashan Bohdan Olehovych 1
1 Department of Differential Equations, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: the boundary value problem, pulse effect, parabolic equation, solution of the problem, interpolation inequalities, estimation of the solution
Abstract
The Dirichlet problem with a pulse effect on a time variable for a linear parabolic equation is investigated. The coefficients of the equation have power characteristics of arbitrary order in time and space variables on a certain set of points. Conditions for the existence and uniqueness of the solution of the problem in Hölder spaces with power weight are found.
References

[1]  Samoilenko, A.M., Perestyuk, N.A. (1995). Impulsive Differential Equations. Singapore: World Scientific.

[2]  Samoilenko, A.M., Perestyuk N.A. (1987). Differential equations with impulse influences. K.: High school.

[3]  Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Skripnik N.V. (2007). Differential Equations with Impulse Effects: Multivalued Righthand Sides with Discontinuities. K.: Institute of Mathematics National Academy of Sciences of Ukraine. (in Ukrainian)

[4]  Asanova, А.Т. (2013). On a nonlocal boundary- value problem for system of impulsive hyperbolic equations: Ukrainian Mathematical Journal, 65 (3), 315–328. (in Ukrainian)

[5]  Bainov, D.D., Minchev, E., Myshkis, A. (1997). Periodic Boundary value problems for impulsive hyperbolic systems: Gommun. Appl. Anal., 1 (4), 1 – 14.

[6] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’tseva, N. N. (1968). Linear and quasilinear equations of parabolic type. Transl. Math. Monogr., Vol. 23. - Providence, RI: AMS. xi+648 p.

[7]  Bitsadze, A. V. (1981). Some classes of equations in partial derivatives. Moscow: Science. (in Ukrainian)

[8]  I. D. Pukalskyi (2017). Boundary - value problems for parabolic equations with impulsive condition and degenerations: Journal of Mathematical Sciences. Vol. 223, N 1, 60–71.

[9]  Isaryuk, I.M., Pukalskyi, I.D. (2016). The boundary value problems with impulse conditions for parabolic equations with degenerations: Math. methods and physical-mechanical fields, 59 (3), 55–67. (in Ukrainian)

[10]  Isaryuk, Inna M., Pukalskyi, Ivan D. (2015). The boundary value problems for parabolic equations with a nonlocal condition and degenerations: Journal of Mathematical Sciences, Vol. 207 (1), 26–38.

[11]  Pukalskyi, I.D., Isaryuk, I.M. (2015). Nonlocal parabolic boundary value problems with singularities: Journal of Mathematical Sciences, Vol. 208 (3), 327–343.

[12]  Friedman, A. (1964). Partial differential equations of parabolic type. Englewood Cliffs: Prentice Hall.

Cite
ACS Style
Yashan, B.O. The boundary value Dirichlet problem for parabolic equation with a pulse effect. Bukovinian Mathematical Journal. 2018, 6 https://doi.org/ https://doi.org/10.31861/bmj2018.01.135
AMA Style
Yashan BO. The boundary value Dirichlet problem for parabolic equation with a pulse effect. Bukovinian Mathematical Journal. 2018; 6(1-2). https://doi.org/ https://doi.org/10.31861/bmj2018.01.135
Chicago/Turabian Style
Bohdan Olehovych Yashan. 2018. "The boundary value Dirichlet problem for parabolic equation with a pulse effect". Bukovinian Mathematical Journal. 6 no. 1-2. https://doi.org/ https://doi.org/10.31861/bmj2018.01.135
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings