A topological space X is called strongly σ-metrizable if X=U_{n\in ω} X_n for an increasing sequence (X_n)_{n \in ω} of closed metrizable subspaces such that every convergence sequence in X is contained in some X_n. If, in addition, every compact subset of X is contained in some X_n, n \in ω, then X is called super σ-metrizable. Answering a question of V.K. Maslyuchenko and O.I. Filipchuk, we prove that a topological space is strongly σ-metrizable if and only if it is super σ-metrizable.
Alas O., Wilson R. When is a compact space sequentially compact? // Topology Proc. – 2005. – 29, N2. – C.327–335.
Bella A., Nyikos P. Sequential compactness vs. countablecompactness//Colloq.Math. –2010.– 120, N2. – C.165–189.
Engelking R. General Topology. — Berlin: Heldermann Verlag, 1989. — 529 p.
Maslyuchenko V.K. Differently Continuous Mappings of Many Variables with Values in σ-Metrizing Spaces // Nonlinear Oscillations. – 1999. – 2, No. 3. – P. 337–344.
Kozhukar O.G., Maslyuchenko V.K. Around Debs Theorems on Multivalued Mappings // Nauk. visn. Cherniv. un-tu. Vol. 191/192. Mathematics. – 2004. – P. 61–66. 6. Filipchuk O.I. Distinctly continuous mappings and their analogues with values in non-metrizable spaces, Dissertation ... Candidate of Physical and Mathematical Sciences, Chernivtsi, 2010. – 124 p.
- ACS Style
- Banakh, I.; Banakh, T.O. Strongly σ-Metrizable Spaces Are Super σ-Metrizable. Bukovinian Mathematical Journal. 2017, 5
- AMA Style
- Banakh I, Banakh TO. Strongly σ-Metrizable Spaces Are Super σ-Metrizable. Bukovinian Mathematical Journal. 2017; 5(1-2).
- Chicago/Turabian Style
- Iryna Banakh, Taras Onufriyovych Banakh. 2017. "Strongly σ-Metrizable Spaces Are Super σ-Metrizable". Bukovinian Mathematical Journal. 5 no. 1-2.