Перейти до основного вмісту
On some generalizations of p-loxodromic functions
Khrystiyanyn Andriy Yaroslavovych 1 , Lukivska Dzvenislava Volodymyrivna 1
1 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: p-loxodromic function
Abstract

 The functional equation of the form 

References

Crowdy D.G. Geometric function theory: a modern view of a classical subject // IOP Publishing Ltd and London Mathematical Society, Nonlinearity. – 2008. – 21, N10. – T 205-T219.

Hellegouarch Y. Invitation to the Mathematics of Fermat-Wiles. — Academic Press, 2002. — 381 pp.

Hushchak O., Kondratyuk A., The Julia exceptionality of loxodromic meromorphic functions // Vicnyk of the Lviv Univ., Series Mech. Math – 2013. – 78. – P. 35-41.

Khoroshchak V.S., Khrystiyanyn A.Ya., Lukivska D.V. A class of Julia exceptional functions // Carpathian Math. Publ.. – 2016. – 8, N1. – P. 172-180.

Khoroshchak V.S., Kondratyuk A. A., The Riesz measures and a representation of multiplicatively periodic δ-subharmonic functions in a punctured euclidean space // Mat. Stud. – 2015. – 43, N1. – P. 61-65.

Khoroshchak V.S., Sokulska N. B. Multiplicatively periodic meromorphic functions in the upper halfplane // Mat. Stud. – 2014. – 42, N2. – P. 143148.

Khrystiyanyn A.Ya., Kondratyuk A. A. Meromorphic mappings of torus onto the Riemann sphere // Carpathian Math. Publ. – 2012. – 4, N1. – P. 155-159.

Khrystiyanyn A.Ya., Kondratyuk A. A. Moduloloxodromic meromorphic function in C // Ufimsk. Mat. Zh. – 2016. – 8, N4. – P. 156-162.

Klein F. Zur Theorie der Abel’schen Functionen // Math. Ann. – 1890. – 36, – P. 1-83.

Kondratyuk A.A., Loxodromic meromorphic and δ-subharmonic functions // Proceedings of the WorkshoponComplexAnalysisanditsApplicationsto Differential and Functional Equations. Publications of the University of Eastern Finland Reports and Studies in Forestry and Natural Sciences, Joensuu, Finland. – 2014. – 14. – P. 89-99.

Kondratyuk A.A., Zaborovska V.S.Multiplicatively periodic subharmonic functions in the punctured Euclidean space // Mat. Stud.. – 2013. – 40, N2. – P. 159-164.

Rausenberger O.LehrbuchderTheoriederPeriodischen Functionen Einer variabeln. — Leipzig: Druck und Ferlag von B.G.Teubner, 1884.

Serdjo Kos, Tibor K. Pog´any On the Mathematics of Navigational Calculations for Meridian Sailing // Electronic Journal of Geography and Mathematics, 2012.

Schottky F. ¨Uber eine specielle Function welche bei einer bestimmten linearen Transformation ihres Arguments unver¨andert bleibt J. // Reine Angew. Math.. – 1887. – 101, N1. – P. 227-272.

Valiron G. Cours d’Analyse Mathematique, Theorie des fonctions, 2nd Edition. — Paris: Masson et.Cie., 1947.

Cite
ACS Style
Khrystiyanyn, .Y.; Lukivska, .V. On some generalizations of p-loxodromic functions. Bukovinian Mathematical Journal. 2017, 5
AMA Style
Khrystiyanyn Y, Lukivska V. On some generalizations of p-loxodromic functions. Bukovinian Mathematical Journal. 2017; 5(1-2).
Chicago/Turabian Style
Andriy Yaroslavovych Khrystiyanyn, Dzvenislava Volodymyrivna Lukivska. 2017. "On some generalizations of p-loxodromic functions". Bukovinian Mathematical Journal. 5 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings