Перейти до основного вмісту
On non-logarithmic solutions of a second-order differential equation
Shavala Olena 1
1 GoIT, Kyiv, 01001, Ukraine
Keywords: second-order differential equation
Abstract

We investigate some properties of nonlogarithmic solutions of the equation 

References

Latysheva K.Ya. Lectures on the analytical theory of differential equations and their applications (the Frobenius-Latysheva method. — K.: Institute of Mathematics. Academy of Sciences of the Ukrainian SSR, 1970. — 393 p.

Laine I. Nevanlinna Theory and Complex Differential Equations. — Berlin: Walter de Gruyter, — 341 p.

Stepin S.A. Singular points of second-order differential equations: solutions with logarithmic terms // UMN. – 1999. – 54, No. 1(325). - S. 265-266.

N.I. Tereshchenko On asymptotic logarithmic solutions of linear homogeneous differential equations // UMZh. - 1958. - 10, No. 1. - S. 82-83.

Golubev V.V. Lectures on the analytical theory of differential equations. — M.-L.: Gosudarstvennoeizd-votechniko-teoreticheskoyeliteratury, 1950. — 436 p.

Hryhorenko N.V. Logarithmic singularities of Fuchs's equations and the finiteness criterion of the monodromy group // Mathematical notes. - 1983. - 33, No. 6. - S. 881–884.

Frobenius G. Ueber die Integration der linearen DifferentialgleichungendurchReihen//Journalfurdie reine und angewandte Mathematik. - 1873. - 76. - P. 214-235.

Ains E.L. Ordinary differential equations. — Kharkiv: ONTI, 1939. — 719 p.

ˇSeda V. O niektory´ch odnostiach rieˇseni diferenti´alnej rovnice y′′ = Q(z)y, Q(z) ̸≡ 0 je cel´a funktiona // Acta F.R.N. Univ. Comen. Math. – 1959. – 4. – P. 223–253.

Bank S. A note on the zero-sequences of solutions of linear differential equations // Results in Mathematics. - 1988. - 13. - P. 1-11.

Shen L.-C. Construction of a differential equation f′′ + Af = 0 with solutions having the prescribed zeros // Proceedings of the AMS. - 1985. - 95, No. 4. - S. 544-546.

Heittokangas J., Laine I. Solutions of f′′ ​​+ A(z)f = 0 with prescribed sequences of zeros // Acta Math. Univ. Comenianae. - 2005. - 74, No. 2. - S. 287307.

Saks S., Zygmund A. Analytic functions. — Warszawa-Wroclaw: Nakladem Polskiego towarzystwa matematicycznego, 1952. — 451

Gelfond A.O. Calculation of finite differences. — M.: Nauka, 1967.

Hille E. Ordinary differential equations in the complex domain. — New York: John Wiley & Sons, 1976. — 484 p.

Matveev N.M. Methods of integration of ordinary differential equations. — M.: Higher School, 1967. — 564 p.

Shavala O.B. On some properties of meromorphic solutions of a linear differential equation of the third order // All-Ukrainian scientific conference "Modern problems of probability theory and mathematical analysis". — Ivano-Frankivsk: 2016. – P. 147-148.

Cite
ACS Style
Shavala, O. On non-logarithmic solutions of a second-order differential equation. Bukovinian Mathematical Journal. 2017, 5
AMA Style
Shavala O. On non-logarithmic solutions of a second-order differential equation. Bukovinian Mathematical Journal. 2017; 5(1-2).
Chicago/Turabian Style
Olena Shavala. 2017. "On non-logarithmic solutions of a second-order differential equation". Bukovinian Mathematical Journal. 5 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings