The problem of optimal linear estimation of the functional
Cambanis, S. Complex stable variables and processes // Contributions to Statistics: Essays in Honor of Norman L. Johnson, P. K. Sen, ed., NorthHolland, New York - 1983. - P. 63-79.
Cambanis, S., Masry, E. Spectral density estimation for stationary stable processes // Stoch. Process. Applications. - 1984. - 18, N.1. - P. 1-31.
Cambanis, S., Soltani, R. Prediction of stable processes: Spectral and moving average representations// Z. Wahrsch. Verw. Gebiete. - 1984. - 66, - P. 593-612.
Grenander, U. A prediction problem in game theory // Ark. Mat. - 1957. - 3, - P. 371-379.
Hosoya, Y. Harmonizable stable processes.// Z. Wahrsch. Verw. Gebiete. - 1982. - 60, - P. 517-533.
Kassam S. A., Poor H. V. Robust techniques for signal processing: A survey// Proceedings of the IEEE. - 1985. - 73, N.3. - P. 433-481.
Kolmogorov A. N Collection of articles. Volume. II: Probability theory and mathematical statistics. Ed. AND. N. Shiryaev. Mathematics and its applications. — M.: Nauka, 1986. — 535 c.
Luz M., Moklyachuk M. Robust extrapolation problem for stochastic processes with stationary increments// Mathematics and Statistics. – 2014. – 1, N.2. - P. 78-88.
Luz M., Moklyachuk M. Minimax interpolation problem for random processes with stationary increments// Statistics, Optimization & Information Computing. - 2015. -3, - P. 30-41.
Luz M., Moklyachuk M. Filtering problem for random processes with stationary increments// Contemporary Mathematics and Statistics. – 2015. – 3, N.1. - P. 8-27.
Moklyachuk M. P. Robust procedures in time series analysis// Theory of Stochastic Processes. - 2000. - 6, N.3-4. - P. 127-147.
Moklyachuk M. P. Game theory and convex optimization methods in robust estimation problems// Theory of Stochastic Processes. - 2001. - 7, N.1-2. - P. 253-264.
Moklyachuk M. P. Robust estimates of functionals from stochastic processes. — K.: VPC "Kyiv University 2008. — 320 p.
Moklyachuk M. P. Minimax-robust estimation problems for stationary stochastic sequences//Statistics, Optimization & Information Computing. – 2015. – 3, N.4. – P. 348-419.
Moklyachuk M., Golichenko I. Periodically correlated processes estimates. — LAP Lambert Academic Publishing, 2016. — 308 p.
Moklyachuk M., Masyutka O. Minimaxrobust estimation technique for stationary stochastic processes.—LAPLambertAcademicPublishing, 2012. — 296 p.
Moklyachuk M. P., Ostapenko V. I. Minimax interpolation problem for harmonizable stable sequences with noise observations// J. Appl. Math. Stat. – 2015. – 2, N.1. – P. 21-42.
Moklyachuk M. P., Ostapenko V. I. Minimax interpolation of harmonizable sequences// Theor. Probability and Math. Statistics. - 2016. - N.92. – P. 135–146.
Pourahmadi, M. On minimality and interpolation of harmonizable stable processes. // SIAM J. Appl. Math. - 1984. - 44, N.5. – P. 1023-1030.
Rajput, S., Sundberg, C. On some extremal problems in Hp and the prediction of Lp - harmonizable stochastic processes // Probability Theory and Related Fields. - 1994. - 99, N.2. - P. 197-210.
Rockafellar, R. T. Convex Analysis. — Princeton: University Press, 1997. — 451 p.
Pshenichny B.N. Necessary conditions of extremum. — M.: Nauka, 1982. — 144 p.
Singer, I. Best Approximation in Normed LinearSpacesbyElementsofLinearSubspaces.—BerlinHeidelberg-New York: Springer-Verlag, 1980—415 p.
Vastola, K. S., Poor, H. V. An analysis of the effects of spectral uncertainty on Wiener filtering // Automatica. - 1983. - 28, - P. 289-293.
Weron, A. Harmonizable stable processes on groups: spectral, ergodic and interpolation properties. // Z. Wahrsch. Verw. Gebiete - 1985. - 68, N.4. - P. 473-491.
Wiener, N. Extrapolation, interpolation and smoothing of stationary time series. With engineering applications. — The M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Mass., 1966. — 163 p.
Yaglom A.M. Extrapolation, interpolation and filtering of stationary random processes with rational spectral density // Proceedings of the Moscow Mathematical Society – 1955. – N.4 – P. 333-374.
Yaglom A. M. Correlation theory of stationary and related random functions. Vol. 1: Basic results. — Springer Series in Statistics, Springer-Verlag, New York etc., 1987. — 526 p.
Yaglom A. M. Correlation theory of stationary and related random functions. Vol. 2: Supplementary notes and references. — Springer Series in Statistics, Springer-Verlag, New York, etc., 1987. — 258 p.
- ACS Style
- Moklyachuk , M.; Ostapenko, V. Interpolation of Harmonized Processes from Observations with Noise. Bukovinian Mathematical Journal. 2017, 5
- AMA Style
- Moklyachuk M, Ostapenko V. Interpolation of Harmonized Processes from Observations with Noise. Bukovinian Mathematical Journal. 2017; 5(1-2).
- Chicago/Turabian Style
- Mykhaylo Moklyachuk , V. Ostapenko. 2017. "Interpolation of Harmonized Processes from Observations with Noise". Bukovinian Mathematical Journal. 5 no. 1-2.