Перейти до основного вмісту
Theorems about intermediate affine function for convex and concave functions
Maslyuchenko Volodymyr Kyrylovych 1 , Melnyk Vasyl 2
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: affine function
Abstract

Given a convex set $E ⊆ \mathbb{R}$, we obtain different conditions that imply the existence of an such affine function $f: E→ \mathbb{R}$ such that $g(x) ≤ f(x) ≤ h(x)$ for all $x ∈ E$ and for every convex upward and convex downward functions $g,h: E→ \mathbb{R}$ possessing the inequality $g(x) ≤ h(x)$ for all $x ∈ E$.

Cite
ACS Style
Maslyuchenko, V.K.; Melnyk, V. Theorems about intermediate affine function for convex and concave functions. Bukovinian Mathematical Journal. 2016, 4
AMA Style
Maslyuchenko VK, Melnyk V. Theorems about intermediate affine function for convex and concave functions. Bukovinian Mathematical Journal. 2016; 4(1-2).
Chicago/Turabian Style
Volodymyr Kyrylovych Maslyuchenko, Vasyl Melnyk. 2016. "Theorems about intermediate affine function for convex and concave functions". Bukovinian Mathematical Journal. 4 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings