Перейти до основного вмісту
Symmetric analytic functions on $ℓ_1 (A)$
Zagorodniuk Andriy Vasyliovych 1 , Cherneha Iryna Volodymyrivna 2
1 Department of Mathematical and Functional Analysis, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine
2 Department of Analysis, Geometry and Topology, Institute of Applied Problems of Mechanics and Mathematics named after Ya. S. Pidstryhach, NAS of Ukraine, Lviv, 79060, Ukraine
Keywords: symmetric analytic functions, commutative Banach algebra, homomorphisms
Abstract

We study the algebra of symmetric analytic functions of bounded type from $ℓ_1 ( A)$ in $A$, where $A$ is a commutative Banach algebra. Some algebraic bases and $A$ -valued homomorphisms of $ℓ_1 ( A)$ are described.

References

[1] Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. - M.:Nauka, 1989. - 624 p.

[2]  Alencar R., Aron R., Galindo P. and Zagorodnyuk A. Algebras of symmetric holomorphic functions on $ℓ_p$ // Bull. Lond. Math. Soc. - 2003. - 35 . - P. 55-64.

[3]  Aron R.M., Cole B.J. and Gamelin T.W. Spectra of algebras of analytic functions on a Banach space // J. Reine Angew. Math. - 1991. - 415 . - P. 51-93.

[4]  Aron R.M., Cole B.J. and Gamelin T.W. Weak- star continuous analytic funtions // Can. J. Math. - 1995. - 47 . - P. 673-683.

[5]  Carne T.K., Cole B. and Gamelin T.W. A uniform algebra of analytic functions on a Banach space // Trans. Amer. Math. Soc. - 1989. - 314 . - P. 639-659.

[6]  Chernega I., Galindo P. and Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra // Proc. Edinburgh Math. Soc. - 2012. - 55 . - P. 125-142.

[7]  Chernega I., Galindo P. and Zagorodnyuk A. The convolution operation on the spectra of algebras of symmetric analytic functions // J. Math. Anal. Appl. - 2012. - 395 . - P. 569-577.

[8]  Chernega I., Galindo P. and Zagorodnyuk A. A multiplicative convolution on the spectra of algebras of symmetric analytic functions // Rev. Mat. Complut. - 2014. - 27 , N2. - P. 575-585.

[9]  Dineen S., Harte R.E., Taylor C. Spectra of tensor product elements III: Holomorphic properties // Math. Proc. Royal Irish Acad. - 2003. - 103A . - P. 61-92.

[10]  González M., Gonzalo R. and Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces // J. London Math. Soc. - 1999. - 59 , N2. - P. 681-697.

[11]  Nemirovskii A.S. and Semenov S.M. On polynomial approximation of functions on Hilbert space // Mat. USSR Sbornik - 1973. - 21 . - P. 255- 277.

Cite
ACS Style
Zagorodniuk, A.V.; Cherneha, I.V. Symmetric analytic functions on $ℓ_1 (A)$. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Zagorodniuk AV, Cherneha IV. Symmetric analytic functions on $ℓ_1 (A)$. Bukovinian Mathematical Journal. 2016; 3(3-4).
Chicago/Turabian Style
Andriy Vasyliovych Zagorodniuk, Iryna Volodymyrivna Cherneha. 2016. "Symmetric analytic functions on $ℓ_1 (A)$". Bukovinian Mathematical Journal. 3 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings