Перейти до основного вмісту
Steinhaus-Kosinski problem in complex space
Zelinsky Yuriy Borisovych 1
1 Department of Complex Analysis and Potential Theory, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01004 , Ukraine
Keywords: Steinhaus-Kosinski problem, complex space
Abstract
We consider a generalization of some problem of Steinhaus to higher-dimensional complex spaces. We show that for any continuous multi-valued acyclic map $Ф : \mathbb{B}^{2n} → \mathbb{C}$ on a ball $\mathbb{B}^{2n}, n≥2,$ whose restiction to the boundary of the ball is a Hopf fibration, there is a point $y ∈ \mathbb{C}$  whose preimage $Ф^{-1}(y) = \{x ∈ \mathbb{B}^{2n} : y ∈ Ф(x)\}$ contains at least three points. If the map $Ф$  is zero- dimensional then the set $\{x ∈ \mathbb{B}^{2n} : |Ф^{-1}(x)| ≥ 3\}$ has non-empty interior in  $\mathbb{B}^3$.
References

[1]  A. Kosinski, On a problem of Steinhaus , Fund. Math., (1958), 46 , 47-59.

[2] Y.B. Zelinsky, Application of the theory of bundles to the study of continuous mappings, Tenth Math. school. Kiev; Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, (1974), 290-307.

[3] Y.B. Zelinsky, On some Kosinskii problems, Ukr. matem. jurnal, (1975),27, № 4, 510-516.

[4] Y.B. Zelinsky,On $n$-admissible multivalued mappings, Metric vopr. of the theory of functions and mappings, Vyp.7, Kiev; Naukova Dumka, (1975), 64-83.

[5] A.K. Bakhtin, G.P. Bakhtina, Y.B. Zelinsky, Topological-algebraic structures and geometric methods in complex analysis, Pratsi Institut Matematiki NASU, 73 ,(2008), 308 p.

[6]  Yuri Zelinskii, Ideas of Hugo Steinhaus incontemporary mathematics , Lvov mathematical school in the period 1915-45 as seen today.- Warszawa: PAN. (2009), 107-114.

[7] Y.B. Zelinsky, On multiplicity of continuous representations of regions, Ukr. matem. zhurn, (2005), 57, № 4, 554-558.

[8] Y.B. Zelinsky,On the mapping of a projective space into a sphere, Ukr. matem. zhurn. (2010), 62, № 7, 1037-1044.

[9] Y.B. Zelinsky,Open questions of mapping of areas on manifolds, Zbirnikpratsy IInstitut Matematiki NASU, (2010), 7 , № 2, 242-248.

[10]  Yuri Zelinskii, Continuous mappings between domains , Bulletin de la societé des sci. et letters de Lódź , (2010), 60 , № 2, 10-14.

[11] E. Spener Algebraic Topology, Moscow: Mir, (1971), 680 p.

[12] V.A. Rokhlin, D.B. Fuchs, Nachal'nyi kurs topologii, Moscow: Nauka, (1977), 488 p.

[13] K. Kuratovsky, Topology, In 2 vols, Moscow: Mir, (1966),1, 596 p, 2, 624 p.

[14] P.S. Alexandrov, B.A. Pasynkov, Introduction to the Theory of Dimensionality, Moscow: Nauka, (1973), 576 p.

Cite
ACS Style
Zelinsky, Y.B. Steinhaus-Kosinski problem in complex space. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Zelinsky YB. Steinhaus-Kosinski problem in complex space. Bukovinian Mathematical Journal. 2016; 3(3-4).
Chicago/Turabian Style
Yuriy Borisovych Zelinsky. 2016. "Steinhaus-Kosinski problem in complex space". Bukovinian Mathematical Journal. 3 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings