We prove that every subset $F$ of some locally arcwise connected metrizable compact $Y$ is the cluster set of a continuous function $f : (0;1] → Y$ at 0 if and only if it is nonempty closed and connected.
[1] Maslyuchenko O.V. The oscillation of quasicontinuous functions on pairwise attainable spaces // Houston Journal of Mathematics. 2009. - 35 , N1. - p. 113-130.
[2] Maslyuchenko O.V. Construction of $w$ -primaries: strongly achievable spaces // Mathematical Bulletin of the National Technical School. - 2009. - 6 . - p. 155-178.
[3] Maslyuchenko O.V., Onipa D.P. Limit oscillations of locally constant functions (in Russian) // Letters in Mathematics - 2013. - 1, N3-4. - p. 97-99.
[4] Maslyuchenko O.V., Onipa D.P. Construction of functions with given boundary sets // Sixteenth International Scientific Conference named after Academician Mykhailo Kravchuk. Kyiv, May 14-15, 2015 - National Technical University of Ukraine “KPI”. - 2015. - p. 137-139.
[5] Mazurkiewicz S. Sur les lignes de Jordan // Fund. Math. - 1920. - 1 . - p. 166-209.
[6] Bessaga C., Petczyński A. Selected topic in infinite-dimensional topology — Warszawa: PWN, 1975. - 353 p.
[7] Engelking R. General topology. - Moscow: Mir, 1986. - 752 p.
- ACS Style
- Maslyuchenko, O.V.; Onypa, D.P. On limit sets of continuous functions with values in locally linearly connected spaces. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Maslyuchenko OV, Onypa DP. On limit sets of continuous functions with values in locally linearly connected spaces. Bukovinian Mathematical Journal. 2016; 3(3-4).
- Chicago/Turabian Style
- Oleksandr Volodymyrovych Maslyuchenko, Denys Pavlovich Onypa. 2016. "On limit sets of continuous functions with values in locally linearly connected spaces". Bukovinian Mathematical Journal. 3 no. 3-4.