We prove that any connected subset $F$ of a connected space $X$ with $|F| = \mathfrak{c} $ is a Darboux retract of $X$ if there exists a Darboux function $f : X → [0,1]$ such that $F = f^{-1} (0).$ We also show that any connected subset $E$ of a metrizable separable space $X$ is a weak Darboux retract of $X$ if the complement $X$ \ $E$ has no isolated points.
[1] Р. Engelking, General topology, M.: Mir(1986) 790 p.
[2] J.G. Ceder, On maximally resolvable spaces , Fund. Math. 55 (1964), 87-93.
[3] J.L. Cornette, Connectivity functions and images of Peano continuum , Fund. Math. 75 (1966), 184-192.
[4] J.L. Cornette, J.E. Girollo, Connectivity retracts of finitely coherent Peano continua , Fund. Math. 61 (1967), 177-182.
[5] R.G. Gibson, F. Roush, Concerning the extension of connectivity functions , Topol. Proc. 10 (1985), 75-82.
[6] G.R. Gordth, K.R. Kellum, Strong Darboux retracts , Top. Appl. 53 (1993), 1-5.
[7] R. Pawlak, Extensions of Darboux functions , Real Anal. Exch. 15 (1989-1990), 511-547.
[8] R. Pawlak, On some characterization of Darboux retracts , Topol. Proc. 17 (1992), 197-204.
[9] F. Roush, R.G. Gibson, K.R. Kellum, Darboux retracts , Proc. Amer. Math. Soc. 79 (1980), 491-494.
- ACS Style
- Karlova, O. On Darboux weak retractions. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Karlova O. On Darboux weak retractions. Bukovinian Mathematical Journal. 2016; 3(3-4).
- Chicago/Turabian Style
- Olena Karlova. 2016. "On Darboux weak retractions". Bukovinian Mathematical Journal. 3 no. 3-4.