We establish sufficient and necessary condition for $\int_0^{+∞} e^{-xp} lnμ(x,F) < +∞, p > 0,$ for a positive functional series of the form $F(x) = \sum_{n=0}^{+∞} α_n e^{xλ_n + \tau (x)β_n}, α_n ≥ 0, (n ≥ 0),$ convergent for $x ≥ 0$, where $\tau (x)$ is positive increase, $(λ_n), (β_n)$ are an positive sequences, $μ(x,F) = max \{α_n e^{xλ_n + \tau (x)β_n} : n ≥ 0\}.$
[1] Kamthan P.K. A theorem on step functions. II // Istambul Univ. Fen. Fac. Mecm. A. - 1963. - V.28. - P.65-69.
[2] Skaskiv O.B., Trusevych O.M., Oryshchyn O.G. Analogs of the Variance inequality for some positive series // Bulletin of the National University “Lviv Polytechnic”. Physical and mathematical sciences. - 2005. - Issue 540. - P.41-44.
[3] Mulyava O.M. On the classes of convergence of Dirichlet series // Ukrainian Mathematical Journal - 1999. - VOL. 51, №. 11, P. 1485-1494.
[4] Filevych P.V., Fedynyak S.I. On belonging of the entire Dirichlet series to convergence class // Mat. Stud. - 2001. - V.16, №1. - P.57-60.
[5] Velychko S.D., Skaskiv O.B. Asymptotic properties of one class of functional series // Vestnik. Lviv Univ. - 1989. - Issue 32. - P.50-51.
[6] Skaskiv O.B., Trusevych O.M. Maximum term and sum of a regularly convergent functional series // Lviv University Bulletin, Series of Mech. and Math. - Issue 49. - P.75-79.
[7] Skaskiv O.B., Trusevych O.M. On exceptional sets in the asymptotic equality of the sum and the maximum term of a positive series similar to the Taylor-Dirichlet series // Mathematical methods and physics and mechanics fields. - 2002. - Т.45, №1. - P.61-64.
[8] Skaskiv, O.B.; Trusevich, O.M.; Kirichinskaya, I.B. On the sum and the maximum term of series similar to the Taylor-Dirichlet series // Mat. methods and fiz.-mekh. fields. - 2004. - T.47, №2. - P.90-95.
- ACS Style
- Skaskiv, O.B.; Tarnovetska, O.Y. On convergence classes of series similar to Taylor-Dirichlet series. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Skaskiv OB, Tarnovetska OY. On convergence classes of series similar to Taylor-Dirichlet series. Bukovinian Mathematical Journal. 2016; 3(3-4).
- Chicago/Turabian Style
- Oleg Bogdanovich Skaskiv, Olga Yuriivna Tarnovetska. 2016. "On convergence classes of series similar to Taylor-Dirichlet series". Bukovinian Mathematical Journal. 3 no. 3-4.