Перейти до основного вмісту
Fractal functions related to the $Δ^μ$ -representation of numbers
Pratsiovytyi Mykola 1,2 , Isayeva T. M. 3
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
3 National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
Keywords: fractal functions, $Δ^μ$ -representation of numbers
Abstract
      In the paper, we consider functions with fractal properties defined in terms of $Δ^μ$ -representation of a number with infinite alphabet $A = \mathbb{N}$:
$(0;1] ∋ x = \sum_n (B_n - B'_n) ≡ Δ_{α_1α_2...α_n....}^μ,$
where $B_n = (1 - μ)^{α_1+α_3+...+α_{2n-1}-1} μ^{α_2+α_4+...+α_{2n-2}},  B'_n = (1 - μ)^{α_1+α_3+...+α_{2n-1}-1} μ^{α_2+α_4+...+α_{2n}}, (0;1) ∋ μ$ is a fixed parameter, and $(α_n)$ is a sequence of positive integers depending on a number $x$. Functions
$f(Δ_{α_1α_2...α_n....}^μ) = Δ_{α_2α_1α_4α_3....}^μ, φ(Δ_{α_1α_2...α_n....}^μ) = Δ_{[α_1α_2][α_3α_4]....}^μ, γ(Δ_{α_1α_2...α_n....}^μ)  = Δ_{[α_1α_2][α_2α_3]....}^μ.$
are among them. Structural properties of the function and fractal (self-similar, self-affine, etc.) properties of essential sets for this function are studied.
References

[1] Albeverio S., Baranovskyi O., Kondratiev Yu., Pratsiovytyi M. On one class of functions related to Osrogradsky series and containing singular and nowhere monotonic functions. // Naukovyi chasopis NPA imeni M. P. Dragomanov. Series 1. Physics and Mathematical Sciences.  2013. - № 15. - P. 35-55.

[2] Albeverio S., Pratsiovytyi M., Torbin G. Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension // Ergod.Th. and Dynam. Sys. - 2004. - Vol. 24. - P. 1-16.

[3] Alkauskas G. Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function // Ramanujan J. - 2011. - Vol. 25, no. 3. - Pp. 359-367.

[4] Dushistova A. A., Kan I. D., Moshchevitin N. G. Differentiability of the Minkowski Question mark function // J. Math. Anal. Appl. - 2013. - Vol. 401, no. 2. - Pp. 774-794.

[5] Minkowski H. Gesammeine Abhandlungen. - Berlin, 1911. - Vol. 2. - Pp. 50-51.

[6] Paradis J., Viader P., Bibiloni L. The derivative of Minkowski's ?(x) function // J. Math. Anal. Appl. - 2001. - Vol. 253. - Pp. 107-125.

[7] Peter R. Massopust Fractal functions, fractal surfaces, and wavelets. - Academic Press; 1 edition (January 18, 1995). - 383 p.

[8] Pratsiovytyi M., Khvorostina Yu. Topological and metric properties of distributions of random variables represented by the alternating Luroth series with independent elements // Random Oper. Stoch. Equ. - 2013. - Vol. 21, no. 4. - Pp. 385-401.

[9] Pratsiovytyi M. V., Kovalenko V. M. Probability measures on fractal curves (probability distributions on the Vicsek fractal) // Random Oper. Stoch. Equ. - 2015. - Vol. 23 (3) . - Pp. 161-168.

[10] Pratsiovytyi M., Vasylenko N. Fractal properties of functions dened in terms of Q-representation // International Journal of Math. Analysis. - 2013. - Vol. 7, no. 61-67.- P. 3155-3169.

[11] Salem R. On some singular monotonic function which are stricly increasing // Trans. Amer. Math. Soc. - 1943. - 53. - Pp. 427-439.

[12] Zhykharyeva Yu., Pratsiovytyi M. Expansions of numbers in positive Luroth series and their applications to metric, probabilistic and fractal theories of numbers // Algebra and Discrete Mathematics. - 2012. - Vol. 14, no. 1. - Pp. 145-160.

[13] Baranovskyi O. M., Pratsovyty I. M., Pratsovytyi M. V. About one function associated with Ostrogradsky's series of the 1st and 2nd types // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2009. - № 10. - P. 40-49.

[14] Goncharenko Y. V., Lysenko I. M. Geometry of infinite-symbolic $q_0^∞$-image of real numbers and its application in metric number theory. Series 1. Physical and mathematical sciences. - 2013. - № 15. - P. 100-118.

[15] Zamriy I. V., Pratsovytyi M. V. Singularity of the digit inverter $Q_3$-image of the fractional part of the real number, its fractal and integral properties (in Ukrainian) // Nonlinear oscillations. - 2015. - Vol. 18, №. 1, p. 55-64.

[16] Pratsovytyi M. V. Nowhere monotone singular functions // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2011. - № 12. - P. 24-36.

[17] Pratsovytyi M.V. Fractal approach in the study of singular distributions.  Kyiv: Drahomanov National Pedagogical University, 1998. - 296 p.

[18] Pratsovytyi M. V., Vasylenko N. A. One family of continuous nowhere non-monotonic functions with fractal properties // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2013. - № 14. - P. 176-188.

[19] Pratsovytyi M. V., Isaeva T. M. $Δ^μ$-images as a generalization of $Δ^μ$-images and the basis of a new metric theory of real numbers // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2014. - № 16. - P. 164-186.

[20] Pratsovytyi M. V., Kalashnikov A. V. Singularity of functions of a one-parameter class containing the Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2011. - № 12. - P. 59-65.

[21] Pratsovytyi M. V., Kalashnikov A. V., Bezborodov V. K. About one class of singular functions containing the classical Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2010. - № 11. - P. 207-213.

[22] Pratsovytyi M. V., Klymchuk S. O. Linear fractals of the Bezikovic-Eggleston type // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2012. - № 13. - P. 80-93.

[23] Pratsovytyi M. V., Klymchuk S. O., Makarchuk O. P. Purity of a digit in the image of a number and its asymptotic average value of a digit // Ukrainian Mathematical Journal - 2014. - Vol. 66, №. 3. - P. 302-310.

[24] Pratsovytyi M. V., Panasenko O. B. Differential and fractal properties of one class of self-affine functions // Lviv University Bulletin. Series of Mechanics and Mathematics. - 2009. - № 70. - P. 128-139.

[25] Pratsovytyi M. V., Svynchuk O. V. Singular nonmonotonic functions defined in terms of $Q_S^*$ -image of the argument // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2013. - № 15. - P. 144-155.

Cite
ACS Style
Pratsiovytyi, M.; Isayeva , T.M. Fractal functions related to the $Δ^μ$ -representation of numbers. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Pratsiovytyi M, Isayeva TM. Fractal functions related to the $Δ^μ$ -representation of numbers. Bukovinian Mathematical Journal. 2016; 3(3-4).
Chicago/Turabian Style
Mykola Pratsiovytyi, T. M. Isayeva . 2016. "Fractal functions related to the $Δ^μ$ -representation of numbers". Bukovinian Mathematical Journal. 3 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings