We prove the following result. Let $X_1,...,X_n,T$ be topological spaces with $X_2,...,X_n$ first countable and $T$ second countable. If $f : X_1 × ... × X_n → Z$ is a separately continuous mapping, where $Z$ is the space of all continuous functions $z : T → \mathbb{R}$ with the topology of either pointwise convergence $C_p(T)$ or compact-open topology $C_k(T),$ then the continuity point set $C(f)$ is residual in the product $X_1 × ... × X_n$.
[1] Maslyuchenko V.K., Mironik O.D. Variously continuous mappings and exhaustive spaces // Mathematical Journal of the National Academy of Sciences. - 2010. - 7 . - P. 111-121.
[2] Karlova O.O., Maslyuchenko V.K., Mironik O.D. Bing plane and non-negatively continuous mappings (in Russian) // Mat. Studii. - 2012. - 38 , №2. - P. 188-193.
[3] Mironik O.D. On non-narrowly continuous mappings with values in the Sidra plane // Bukov. math. zhurnal - 2013. - Т.1, №3-4. - P. 100 - 105.
[4] Myronyk O.D. On the question of continuity of non-narrowly continuous mappings with values in the Sidra plane // Bukov. math. journal - 2014. - VOL. 2, NO. 2-3, P. 173-176.
[5] Maslyuchenko V.K., Myronik O.D. On the continuity of KC-functions with values in the Sidra plane // Carpathian Math. - 6 , №2. -P. 329-336. DOI: 10.15330/cmp.6.2.329-336.
[6] Masliuchenko V.K., Myronyk O.D. Cumulative continuity of mappings with values in different generalizations of metric spaces // All-Ukrainian scientific conference “Modern problems of probability theory and mathematical analysis”, February 20-26, 2012, Vorokhta: abstracts - Ivano-Frankivsk. - 2012. - P. 5-6.
[7] Gartside P., Reznichenko E. Near metric properties of function spaces // Fund. Math. - 2000. - 164 , N2. - P. 97-114.
[8] Reznichenko E.A. Stratifiability of $C_k(X)$ for a class of separable metrizable $X$ // Topology Appl. - 2008. - 155 . - P. 2060-2062.
[9] Maslyuchenko V.K. Gan spaces and the Dini problem // Mat. methody i fiziko-mekh. polya. - 1998. - 41 ,№4. - P. 39-45.
- ACS Style
- Myronyk, O.D. Differently continuous mappings with values in function spaces. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Myronyk OD. Differently continuous mappings with values in function spaces. Bukovinian Mathematical Journal. 2016; 3(3-4).
- Chicago/Turabian Style
- Oksana Dmytrivna Myronyk. 2016. "Differently continuous mappings with values in function spaces". Bukovinian Mathematical Journal. 3 no. 3-4.