Перейти до основного вмісту
Continuous functions that preserve the digit 1 $Q_3$ -image of the number
Pratsiovytyi Mykola 1,2 , Zamrii Iryna Viktorivna 2,3
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
3 Department of Software Engineering, State University of Information and Communication Technologies, Kyiv, 03110, Ukraine
Keywords: continuous functions, $Q_3$ -image
Abstract

         In the paper we consider the class of continuous on $[0;1]$ functions preserving digit 1 in three-symbol $Q_3$  -representation of a number. This representation generalizes the classical ternary representation: $x = \sum_{k=1}^∞ 3^{-k} a_k(x) ≡ \Delta_{α_1α_2...α_n...}^3,$ where $a_n(x) ∈ A_3 ≡ \{0,1,2\}.$ Namely we study functions of the form

$f(\Delta_{α_1α_2...α_n...}^{Q_3}) = \Delta_{γ_1γ_2...γ_n...}^{Q_3},$ where $α_n, γ_n ∈ A_3,$

$\Delta_{α_1α_2...α_n...}^{Q_3} ≡ β_{α_1(x)} + \sum_{k=2}^∞  [   β_{α_k(x)} \prod_{j=1}^{k-1} q_{α_j(x)}   ]$

and $γ_n = γ_n (α_1(x),α_2(x),...,α_n(x)),$ but $γ_n = 1$ if and only if $α_n = 1.$

         We prove that the set of such functions is countable, and any function does not have continuum level sets and has at most two countable level sets. Families of functions having one or two infinite level sets are countable.
         For some functions such that their graphs have non-trivial group of «symmetries», «analytic definition» is found and structural, structural similar, variational and integral properties are described.
References

[1] Albeverio S., Baranovskyi O., Kondratiev Yu., Pratsiovytyi M. On one class of functions related to Ostrogradsky series and containing singular and nowhere monotonic functions // Naukovyi chasopis NPO imeni M. P. Dragomanov. Series 1. Physics and Mathematical Sciences. - Kiev: NPU imeni M. P. Dragomanov. - 2013. - № 15. - P. 35-55.

[2] Billingsley P. The singular function on bold play // Am. Sci. — 1983. — 71. — P. 392-397.

[3] Kinney J. R. Note on singular function of Minkowski. — Proc. Amer. Math. Soc., Volume 11, 1960, — pp. 788-794.

[4] Peter R. Massopust. Fractal functions, fractal surfaces, and wavelets. — Academic Press; 1 edition (January 18, 1995), 383 p.

[5] Pratsiovytyi M., Vasylenko N. Fractal properties of functions defined in terms of $Q$-representation // Int. Journal of Math. Analysis, Vol.7, 2013. — №64. — P.3155 - 3169.

[6] Pratsovytyi M., Makarchuk O., Skrypnyk S. Rational and algebraic $Q_2$ -representation of real numbers // Šiauliai Math. Semin. — 2015. — Vol. 10 (18). — P. 199-211.

[7] Salem R. On some singular monotonic function which are strictly increasing // Trans. Amer. Math. Soc. — 1943. — Vol.53, no.3. — P. 427-439.

[8] Schweiger F. Ergodic theory of fibred systems and metric number theory. — Oxford: Clarendon Press, 1995. — 320 p.

[9] Takacs L. An increasing continuous singular function // The Amer. Math. Monthly. — 1978. — no. 85. — P. 35-37.

[10] Zamfirescu T. Most monotone functions are singular // Amer. Math. Mon. — 1981. — Vol. 88. — P. 47-49.

[11] Baranovskyi O.M., Pratsovytyi M.V., Torbin H.M. Ostrohradskyi-Serpinskyi-Pierce series and their applications... - K.: Naukova Dumka, 2013. - 288 p.

[12] Gelfond A. O. On one general property of number systems, Izv. of the USSR Academy of Sciences. Ser. matem, 1959, vol. 23, issue 6, 809-814.

[13] Zamriy I. V., Pratsovytyi M. V. Singularity of the digit inverter $Q_3$ - the image of the fractional part of the real number, its fractal and integral properties // Nonlinear Oscillations. Vol. 18, No. 1. - Institute of Mathematics of the National Academy of Sciences of Ukraine. - 2015 - P. 55-70.

[14] Kalashnikov A. V., Pratsovytyi M. V. Singularity of functions of a one-parameter class containing the Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences - K.: Drahomanov National Pedagogical University. 2011. - №. 12. - P. 59-65.

[15] Katz M. Statistical independence in probability theory, analysis and number theory. - Moscow: Izd. foreign lit. 1963. - 156 p.

[16] Klymchuk S. O., Makarchuk O. P., Pratsovytyi M. V. Frequency of digits in the image of a number and its asymptotic average value of digits // Ukrainian Mathematical Journal - 2014. - №. 3. - P. 302-310.

[17] Kolmogorov A. M., Fomin C. B. Elements of the theory of functions and functional analysis. - K.: Higher School, 1974. - 456 p.

[18] Postnikov A. G. Probabilistic theory of numbers. - M.: Znanie, 1974. - 62 p.

[19] Pratsovytyi M. V. Distributions of sums of random power series // Doklad. NAS of Ukraine. - 1996. - No. 5. - P. 32-37.

[20] Pratsovytyi M.V. Fractal approach in the study of singular distributions. - Kyiv: Drahomanov National Pedagogical University, 1998. - 296 p.

[21] Pratsovytyi M. V. Non-monotonic singular functions // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - Kyiv: Drahomanov National Pedagogical University - 2011. - №. 12. - P. 24-36.

[22] Pratsovytyi M. V., Zamriy I. V. Digit inversor $Q_3$ - the image of the fractional part of a real number as a solution to a system of three functional equations // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. Kyiv: M. P. Drahomanov National Pedagogical University - 2013, №. 15. - P. 156-167.

[23] Pratsovyty M. V., Kalashnikov A. B. Self-affine singular and nowhere monotone functions associated with the $Q$-image of real numbers // Ukrainian Math. Journal - 2013 - Vol. 65, №. 3 - P. 405-417.

[24] Pratsovytyi M. V., Kalashnikov A. V. About one class of continuous functions with complex local structure, most of which are singular or nondifferentiable // Proceedings of IPMM of NAS of Ukraine, 2011. - Vol. 23, p. 180-191.

[25] Pratsovytyi M. V., Skrypnyk S. V. $Q_2$ - image of the fractional part of a real number and inversor of its digits // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - Kyiv: Drahomanov  National Pedagogical University. - 2013. -№ 15. - P. 134-143.

[26] Pratsevyty N. V. One class of random variables with singular distribution // Analytical methods for studying the evolution of stochastic systems. - Kiev: Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, 1989. - P. 78-90.

[27] Pratsevyty N. V. Distributions of random variables with independent $Q$-symbols // Asymptotic and applied problems of random evolutions. - Kiev: Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, 1990. -P. 92-101.

[28] Sinai Ya. G. Automodel probability distributions // Probability theory and its applications. - 1976. - Vol. 21, №1. - P. 63-80.

[29] Turbin A. F. F., Pratsevyty N. V. Fractal sets, functions, distributions. - K.: Naukova Dumka, 1992. - 208 p.

Cite
ACS Style
Pratsiovytyi, M.; Zamrii, I.V. Continuous functions that preserve the digit 1 $Q_3$ -image of the number. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Pratsiovytyi M, Zamrii IV. Continuous functions that preserve the digit 1 $Q_3$ -image of the number. Bukovinian Mathematical Journal. 2016; 3(3-4).
Chicago/Turabian Style
Mykola Pratsiovytyi, Iryna Viktorivna Zamrii. 2016. "Continuous functions that preserve the digit 1 $Q_3$ -image of the number". Bukovinian Mathematical Journal. 3 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings