In the paper we consider the class of continuous on $[0;1]$ functions preserving digit 1 in three-symbol $Q_3$ -representation of a number. This representation generalizes the classical ternary representation: $x = \sum_{k=1}^∞ 3^{-k} a_k(x) ≡ \Delta_{α_1α_2...α_n...}^3,$ where $a_n(x) ∈ A_3 ≡ \{0,1,2\}.$ Namely we study functions of the form
$f(\Delta_{α_1α_2...α_n...}^{Q_3}) = \Delta_{γ_1γ_2...γ_n...}^{Q_3},$ where $α_n, γ_n ∈ A_3,$
$\Delta_{α_1α_2...α_n...}^{Q_3} ≡ β_{α_1(x)} + \sum_{k=2}^∞ [ β_{α_k(x)} \prod_{j=1}^{k-1} q_{α_j(x)} ]$
and $γ_n = γ_n (α_1(x),α_2(x),...,α_n(x)),$ but $γ_n = 1$ if and only if $α_n = 1.$
[1] Albeverio S., Baranovskyi O., Kondratiev Yu., Pratsiovytyi M. On one class of functions related to Ostrogradsky series and containing singular and nowhere monotonic functions // Naukovyi chasopis NPO imeni M. P. Dragomanov. Series 1. Physics and Mathematical Sciences. - Kiev: NPU imeni M. P. Dragomanov. - 2013. - № 15. - P. 35-55.
[2] Billingsley P. The singular function on bold play // Am. Sci. — 1983. — 71. — P. 392-397.
[3] Kinney J. R. Note on singular function of Minkowski. — Proc. Amer. Math. Soc., Volume 11, 1960, — pp. 788-794.
[4] Peter R. Massopust. Fractal functions, fractal surfaces, and wavelets. — Academic Press; 1 edition (January 18, 1995), 383 p.
[5] Pratsiovytyi M., Vasylenko N. Fractal properties of functions defined in terms of $Q$-representation // Int. Journal of Math. Analysis, Vol.7, 2013. — №64. — P.3155 - 3169.
[6] Pratsovytyi M., Makarchuk O., Skrypnyk S. Rational and algebraic $Q_2$ -representation of real numbers // Šiauliai Math. Semin. — 2015. — Vol. 10 (18). — P. 199-211.
[7] Salem R. On some singular monotonic function which are strictly increasing // Trans. Amer. Math. Soc. — 1943. — Vol.53, no.3. — P. 427-439.
[8] Schweiger F. Ergodic theory of fibred systems and metric number theory. — Oxford: Clarendon Press, 1995. — 320 p.
[9] Takacs L. An increasing continuous singular function // The Amer. Math. Monthly. — 1978. — no. 85. — P. 35-37.
[10] Zamfirescu T. Most monotone functions are singular // Amer. Math. Mon. — 1981. — Vol. 88. — P. 47-49.
[11] Baranovskyi O.M., Pratsovytyi M.V., Torbin H.M. Ostrohradskyi-Serpinskyi-Pierce series and their applications... - K.: Naukova Dumka, 2013. - 288 p.
[12] Gelfond A. O. On one general property of number systems, Izv. of the USSR Academy of Sciences. Ser. matem, 1959, vol. 23, issue 6, 809-814.
[13] Zamriy I. V., Pratsovytyi M. V. Singularity of the digit inverter $Q_3$ - the image of the fractional part of the real number, its fractal and integral properties // Nonlinear Oscillations. Vol. 18, No. 1. - Institute of Mathematics of the National Academy of Sciences of Ukraine. - 2015 - P. 55-70.
[14] Kalashnikov A. V., Pratsovytyi M. V. Singularity of functions of a one-parameter class containing the Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences - K.: Drahomanov National Pedagogical University. 2011. - №. 12. - P. 59-65.
[15] Katz M. Statistical independence in probability theory, analysis and number theory. - Moscow: Izd. foreign lit. 1963. - 156 p.
[16] Klymchuk S. O., Makarchuk O. P., Pratsovytyi M. V. Frequency of digits in the image of a number and its asymptotic average value of digits // Ukrainian Mathematical Journal - 2014. - №. 3. - P. 302-310.
[17] Kolmogorov A. M., Fomin C. B. Elements of the theory of functions and functional analysis. - K.: Higher School, 1974. - 456 p.
[18] Postnikov A. G. Probabilistic theory of numbers. - M.: Znanie, 1974. - 62 p.
[19] Pratsovytyi M. V. Distributions of sums of random power series // Doklad. NAS of Ukraine. - 1996. - No. 5. - P. 32-37.
[20] Pratsovytyi M.V. Fractal approach in the study of singular distributions. - Kyiv: Drahomanov National Pedagogical University, 1998. - 296 p.
[21] Pratsovytyi M. V. Non-monotonic singular functions // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - Kyiv: Drahomanov National Pedagogical University - 2011. - №. 12. - P. 24-36.
[22] Pratsovytyi M. V., Zamriy I. V. Digit inversor $Q_3$ - the image of the fractional part of a real number as a solution to a system of three functional equations // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. Kyiv: M. P. Drahomanov National Pedagogical University - 2013, №. 15. - P. 156-167.
[23] Pratsovyty M. V., Kalashnikov A. B. Self-affine singular and nowhere monotone functions associated with the $Q$-image of real numbers // Ukrainian Math. Journal - 2013 - Vol. 65, №. 3 - P. 405-417.
[24] Pratsovytyi M. V., Kalashnikov A. V. About one class of continuous functions with complex local structure, most of which are singular or nondifferentiable // Proceedings of IPMM of NAS of Ukraine, 2011. - Vol. 23, p. 180-191.
[25] Pratsovytyi M. V., Skrypnyk S. V. $Q_2$ - image of the fractional part of a real number and inversor of its digits // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - Kyiv: Drahomanov National Pedagogical University. - 2013. -№ 15. - P. 134-143.
[26] Pratsevyty N. V. One class of random variables with singular distribution // Analytical methods for studying the evolution of stochastic systems. - Kiev: Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, 1989. - P. 78-90.
[27] Pratsevyty N. V. Distributions of random variables with independent $Q$-symbols // Asymptotic and applied problems of random evolutions. - Kiev: Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, 1990. -P. 92-101.
[28] Sinai Ya. G. Automodel probability distributions // Probability theory and its applications. - 1976. - Vol. 21, №1. - P. 63-80.
[29] Turbin A. F. F., Pratsevyty N. V. Fractal sets, functions, distributions. - K.: Naukova Dumka, 1992. - 208 p.
- ACS Style
- Pratsiovytyi, M.; Zamrii, I.V. Continuous functions that preserve the digit 1 $Q_3$ -image of the number. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Pratsiovytyi M, Zamrii IV. Continuous functions that preserve the digit 1 $Q_3$ -image of the number. Bukovinian Mathematical Journal. 2016; 3(3-4).
- Chicago/Turabian Style
- Mykola Pratsiovytyi, Iryna Viktorivna Zamrii. 2016. "Continuous functions that preserve the digit 1 $Q_3$ -image of the number". Bukovinian Mathematical Journal. 3 no. 3-4.