Перейти до основного вмісту
Bifurcation of cycles of parabolic systems with small diffusion
Klevchuk Ivan 1
1 Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: bifurcation of cycles, parabolic systems, diffusion
Abstract
We prove the existence of periodic solutions in autonomous parabolic system of differential equations with small diffusion on the circle. We consider the problem of the existence and stability of traveling waves in the equation of spin combustion and Hutchinson equation.
References

[1] Hale J. Theory of functional-differential equations. - M.: Mir, 1984. - 421 p.

[2] Klevchuk, I.I. On the principle of information for differential-functional equations of neutral type  // Differential Equations. - 1999. - 35, № 4. - P. 464 - 472.

[3] Klevchuk I.I. Homoclinic points for a singularly perturbed system of differential equations with a delay // Ukrainian Mathematical Journal - 2002. - 54 , № 4. - P. 563 - 567.

[4] Klevchuk, I.I. Bifurcation of the equilibrium position in the system of nonlinear parabolic equations with a transformed argument // Ukr. mat.zhurn. - 1999. - 51, № 10. - P. 1342 - 1351.

[5] Klevchuk I.I. Existence of a countable number of cycles in hyperbolic systems of differential equations with transformed argument // Nonlinear oscillations. - 2015. - 18 , № 1. - P. 71 - 78.

[6] Vasilieva A.B., Kashchenko S.A., Kolesov Y.S., Rozov N.H. Bifurcation of autoconvulsions of nonlinear parabolic equations with small diffusion // Mat. collect. - 1986.- 130, № 4. - P. 488 - 499.

[7] Belan, E.P.; Samoylenko, A.M. Dynamics of periodic modes of the phenomenological equation of spin combustion // Ukr. mat. zhurn. - 2013. - 65, № 1. - P. 21 - 43.

[8] Mishchenko E.F., Kolesov Y.S., Kolesov A.Y., Rozov N.H. Periodic motions and bifurcation processes in singularly perturbed systems. - M.: Fizmatlit, 1995. - 336 p.

[9] Mishchenko E.F., Sadovnichiy V.A., Kolesov A.Yu., Rozov N.H. Autowave processes in nonlinear media with diffusion. - M.: Fizmatlit, 2005. - 430 p.

[10] Bogolyubov N.N., Mitropolsky Yu.A. Asymptotic methods in the theory of nonlinear oscillations. - M.: Nauka, 1974.  - 502 p.

[11] Klevchuk, I.I.; Fodchuk, V.I. Bifurcation of special points of differential-functional equations  // Ukr. mat. zhurn. - 1986. - 38, № 3. - P. 324 - 330.

Cite
ACS Style
Klevchuk, I. Bifurcation of cycles of parabolic systems with small diffusion. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Klevchuk I. Bifurcation of cycles of parabolic systems with small diffusion. Bukovinian Mathematical Journal. 2016; 3(3-4).
Chicago/Turabian Style
Ivan Klevchuk. 2016. "Bifurcation of cycles of parabolic systems with small diffusion". Bukovinian Mathematical Journal. 3 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings