Перейти до основного вмісту
Analogues of Wiman's inequality and the Lévy effect for analytic functions in bicruciate
Kuryliak Andriy Olegovich 1 , Skaskiv Oleg Bogdanovich 2 , Skaskiv S. R. 3
1 Department of mathematical economics, econometrics, financial and insurance mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
2 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
3 Ivan Franko National University of Lviv, Ivan Franko National University of Lviv, 79000, Ukraine
Keywords: maximum modulus, maximal term, analytic functions in the bidisc, Wiman's type inequality, random analytic function
Abstract
In this paper we prove some analogue of Wiman's type inequality for random analytic functions in the bidisc $\mathbb{D}^2 = \{z ∈ \mathbb{C}^2 : |z_1|<1, |z_2|<1\}.$ The obtained inequality is sharp.
References

[1] Kővari T. On the maximum modulus and maximal term of functions analytic in the unit disc // J. London Math. Soc. - 1966. - V.41, P. 129-137.

[2] Suleymanov N.M. Viman-Valiron type estimates for power series with finite radius of convergence and their accuracy // Dokl. ANSSR. - 1980. - Vol. 253, №4. - P. 822-824.

[3] Filevich P. V. Wiman-Valiron type estimates for random analytical functions in a circle // Integral transforms and their application to boundary value problems. Kyiv: Inst. of Mathematics. - 1997. - Issue 15. - P. 227-238.

[4] Skaskiv O.B., Kurilyak A.O. Direct analogues of the Wiener inequality for functions analytical in a unit circle // Carpathian Mathematical Publications. - 2010. - Т.2, №1. - P.109-118.

[5] Kurilyak A.O., Skaskiv O.B. Wiener type inequality for functions analytical in the circle and Bera category // Scientific Bulletin of Yuriy Fedkovych Chernivtsi National University. Series: Mathematics. - Т.1, №4. - Chernivtsi: Chernivtsi National University, 2011. - P.73-79.

[6]  Kuryliak A.O., Skaskiv O.B., Chyzhykov I.E. Baire categories and Wiman's inequality for analytic functions // Bull. Soc. Sc. et des letters de Lodz. - 2012. - V.62, №3. - P.17-33.

[7]  Kuryliak A. O., Skaskiv O. B., Chyzhykov I.E. Baire categories and classes of analytic functions in which the Wiman-Valiron's type inequality can be almost surely improved // arXiv: 1206.3655v1 [math.CV] 16 Jun 2012. - 17 p.

[8] Ovchar I.E., Skaskiv O.B. One analog of Wiener inequality for Laplace integrals depending on a small parameter // Carpathian Mathematical Publications - 2013. - Т.5, №2. - P.305-309.

[9]  Shumitzky A. A probabilistic approach to the Wiman-Valiron's theory for entire functions of several complex variables // Complex Variables. - 1989. - V.13. - P. 85-98.

[10]  Fenton P.C. Wiman-Valiron theory in two variables // Trans. Amer. Math. Soc. - 1995. - V.347, №11. - P. 4403-4412.

[11]  Gopala Krishna J., Nagaraja Rao I.H. Generalized inverse and probability techniques and some fundamental growth theorems in $\mathbb{C}^k$ // J. Indian Math. Soc. - 1977. - 41. - P.203-219.

[12] Skaskov O.B., Zrum O.V. On the Wiener inequality for random integer functions of two variables, Mat. Studii. - 2005. - Т.23, №2. - P.149-160.

[13] Skaskov O.B., Zrum O.V. Wiener type inequality for integer functions of two complex variables with rapidly oscillating coefficients (in Russian) // Mat. methods and fiz.-mekh. fields. - 2005. - Т.48, №4. - P.78-87.

[14] Skaskiv O.B., Zrum O.V. Refinement of Fenton's inequality for integer functions of two complex variables // Mathematical Bulletin of the National Academy of Sciences. - 2006. - Issue 3. - P.56-68.

[15]  Kuryliak A.O., Skaskiv O.B. Wiman's type inequalities without exceptional sets for random entire functions of several variables // Mat. Stud. - 2012. - V.38, №1. - P. 35-50.

[16]  Kuryliak A.O., Skaskiv O.B., Zrum O.V. Levy's phenomenon for entire functions of several variables // Umsky Mat. Journ. - 2014. - V.6, № 2. - P. 118-127.

[17]  Kuryliak A.O., Shapovalovska L.O. Wiman's inequality for entire functions of several complex variables with rapidly oscillating coefficients // Mat. Stud. - 2015. - V.43, №1. - P.16-26.

[18]  Kuryliak A.O., Shapovalovska L.O., Skaskiv O.B. Wiman's type inequality for some double power series // Mat. Stud. - 2013. - V.39, № 2. - P.134-141.

[19] Kurilyak A., Skaskiv O., Shapovalovska L. Wiener inequality for analytical functions in a bicircle // Bukovinian Mathematical Journal - 2014. - Т.2, № 2-3. - P.130-135.

[20] Kurilyak A.O., Skaskiv O.B., Shapovalovska L.O. Wiener type inequality for analytical functions in a polycircle // Ukrainian Mathematical Journal - 2015.

Cite
ACS Style
Kuryliak, A.O.; Skaskiv, O.B.; Skaskiv, S.R. Analogues of Wiman's inequality and the Lévy effect for analytic functions in bicruciate. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Kuryliak AO, Skaskiv OB, Skaskiv SR. Analogues of Wiman's inequality and the Lévy effect for analytic functions in bicruciate. Bukovinian Mathematical Journal. 2016; 3(3-4).
Chicago/Turabian Style
Andriy Olegovich Kuryliak, Oleg Bogdanovich Skaskiv, S. R. Skaskiv. 2016. "Analogues of Wiman's inequality and the Lévy effect for analytic functions in bicruciate". Bukovinian Mathematical Journal. 3 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings