We establish conditions for the asymptotic relation $ln μ(x,F) ∼ ln μ(x,F_w)$ as $x → +∞$ utside of some exceptional set of finite Lebesgue measure for a positive functional series of the form $F(x) = \sum_{n=0}^{+∞} a_ne^{xλ_n + \tau(x)β_n}, a_n ≥ 0, (n ≥ 0),$ convergent for $x ≥ 0,$ where $\tau(x)$ is a positive increase differentiable function such that $\tau'(x) ≥ 1 (x > 0),(λ_n), (β_n)$ are positive sequences, $F_w(x) = \sum_{n=0}^{+∞} a_ne^{w(λ_n + β_n) + xλ_n + \tau(x)β_n}, μ(x,F) = max\{a_ne^{xλ_n + \tau(x)β_n} : n ≥ 0\}$, and $w(t)$ is an increasing to $+∞$ in interval $[0,+∞)$ function.
[1] Gaysin A.M. Estimation of Dirichlet series with Feuer lacunae // Dokl. RAS. - 2000. - Т.370, №6. - P.735-737.
[2] Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the Dirichlet series // Ukrainian Mathematical Journal - 2005. - Т.57, №4. - P.571 - 576.
[3] Skaskiv O.B. Stability of the maximum of a sequence of linear functions (in Russian) // Mathematical Bulletin of the National Academy of Sciences. - 2004. - VOL. 1, P. 120-129.
[4] Skaskiv O.B.. On some relations between the maximum of the modulus and the maximum term of the Dirichlet series// Mat. Notes. - 1999. - Т.66, №2. - P.282-292.
[5] Skaskov O.B., Trusevich O.M. On the Borel type theorem for series similar to Taylor-Dirichlet series // Mat. Stud. - 2000. - Т.13, №1. - P.79-82.
[6] Trusevych O.M. Analogues of Borel's theorem for one class of positive functional series // Lviv University Bulletin, Series of Mech. and Math. Issue 53. - P.45-47.
- ACS Style
- Skaskiv, O.B.; Tarnovetska, O.Y. On the stability of series similar to Taylor-Dirichlet series. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Skaskiv OB, Tarnovetska OY. On the stability of series similar to Taylor-Dirichlet series. Bukovinian Mathematical Journal. 2016; 3(2).
- Chicago/Turabian Style
- Oleg Bogdanovich Skaskiv, Olga Yuriivna Tarnovetska. 2016. "On the stability of series similar to Taylor-Dirichlet series". Bukovinian Mathematical Journal. 3 no. 2.