Перейти до основного вмісту
On the stability of series similar to Taylor-Dirichlet series
Skaskiv Oleg Bogdanovich 1 , Tarnovetska Olga Yuriivna 2
1 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
2 Department of Computer Systems Software, Chernivtsi National University named after Yu. Fedkovych, Chernivtsi, 58000, Ukraine
Keywords: the stability of series, Taylor-Dirichlet series
Abstract

We establish conditions for the asymptotic relation $ln μ(x,F) ∼ ln μ(x,F_w)$ as $x → +∞$  utside of some exceptional set of finite Lebesgue measure for a positive functional series of the form $F(x) = \sum_{n=0}^{+∞} a_ne^{xλ_n + \tau(x)β_n}, a_n ≥ 0, (n ≥ 0),$ convergent for $x ≥ 0,$ where $\tau(x)$  is a positive increase differentiable function such that $\tau'(x) ≥ 1  (x > 0),(λ_n), (β_n)$ are positive sequences, $F_w(x) = \sum_{n=0}^{+∞} a_ne^{w(λ_n + β_n) +  xλ_n + \tau(x)β_n}, μ(x,F) = max\{a_ne^{xλ_n + \tau(x)β_n} : n ≥ 0\}$, and $w(t)$  is an increasing to $+∞$ in interval $[0,+∞)$ function.

References

[1] Gaysin A.M. Estimation of Dirichlet series with Feuer lacunae // Dokl. RAS. - 2000. - Т.370, №6. - P.735-737.

[2] Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the Dirichlet series // Ukrainian Mathematical Journal - 2005. - Т.57, №4. - P.571 - 576.

[3] Skaskiv O.B. Stability of the maximum of a sequence of linear functions (in Russian) // Mathematical Bulletin of the National Academy of Sciences. - 2004. - VOL. 1, P. 120-129.

[4] Skaskiv O.B.. On some relations between the maximum of the modulus and the maximum term of the Dirichlet series// Mat. Notes. - 1999. - Т.66, №2. - P.282-292.

[5] Skaskov O.B., Trusevich O.M. On the Borel type theorem for series similar to Taylor-Dirichlet series // Mat. Stud. - 2000. - Т.13, №1. - P.79-82.

[6] Trusevych O.M. Analogues of Borel's theorem for one class of positive functional series // Lviv University Bulletin, Series of Mech. and Math.  Issue 53. - P.45-47.

Cite
ACS Style
Skaskiv, O.B.; Tarnovetska, O.Y. On the stability of series similar to Taylor-Dirichlet series. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Skaskiv OB, Tarnovetska OY. On the stability of series similar to Taylor-Dirichlet series. Bukovinian Mathematical Journal. 2016; 3(2).
Chicago/Turabian Style
Oleg Bogdanovich Skaskiv, Olga Yuriivna Tarnovetska. 2016. "On the stability of series similar to Taylor-Dirichlet series". Bukovinian Mathematical Journal. 3 no. 2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings