[1] Khasminsky R.Z. Stability of systems of differential equations at random perturbations of their parameters // Moscow: “Nauka 1969. 368 p.
[2] A. Mazurov and P. Pakshin Stochastic dissipativity with risk-sensitive storage function and related control problems // ICIC Express Letters - 2008. - 3 , N1. - P. 53-60.
[3] Samoilenko A.M., Stanzhytskyi O.M. Qualitative and asymptotic analysis of differential equations with random perturbations: Monograph // K. Naukova Dumka - 2009. - 336 p.
[4] B. Brogliato Dissipative Systems Analysis and Control // Springer - 2005. - 585 p.
[5] V. Koroliuk and N. Limnious Stochastic Systems in Merging Phase Space. // World Scientific Publishing - 2005.
[6] Y. M. Chabaniuk and V. Koroliuk and N. Limnios Fluctuation of stochastic systems with average equilibrium point // C. R. Acad. Sci. - 2007. - 1 , N345. - P. 405-410.
[7] A.V. Kinash, Y.M. Chabanyuk, U.T. Khimka Asymptotic dissipativity of a diffusion process // Mathematical and computer modeling. Series: Physical and mathematical sciences. Kamianets-Podilskyi. - 2014. - N11. - P. 77-87.
[8] Chabaniuk Y.M. Asymptotic normality of the jump procedure of stochastic approximation in the Markov environment // Scientific Bulletin of Chernivtsi Univ. Mathematics. Chernivtsi. - 2007. - N 349. - P. 128-133.
- ACS Style
- Kinash , A.V. Fluctuations of an asymptotically dissipative process with Markov switching. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Kinash AV. Fluctuations of an asymptotically dissipative process with Markov switching. Bukovinian Mathematical Journal. 2016; 3(2).
- Chicago/Turabian Style
- Anastasia Volodymyrivna Kinash . 2016. "Fluctuations of an asymptotically dissipative process with Markov switching". Bukovinian Mathematical Journal. 3 no. 2.