Перейти до основного вмісту
Cauchy problem for the fractal diffusion equation with argument deviation
Drin Svitlana Serhiyivna 1 , Drin Yaroslav Mykhailovych 2
1 Department of Mathematics, National University "Kyiv-Mohyla Academy" , Kyiv, 04655, Ukraine
2 Department of Mathematical Problems of Management and Cybernetics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Cauchy problem, the fractal diffusion equation with argument deviation
Abstract
We prove the solvability of the Cauchy problem for a quasilinear pseudodifferential equation with fractal derivative with respect to time $t$ of order $α ∈ (0,1)$  second derivative with respect to spatial argument $x$ and deviation time variable using the step by step method.
References

[1] Kochubey A.N. Diffusion of fractional order // Differential Equations, 1990.  26, No 4.  P. 485-492.

[2] Kochubey A.N., Eidelman S.D. Equations of one-dimensional fractal diffusion // Dokl. of NAS of Ukraine.  2003, No 12.  P. 11-16.

[3]  Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. - Basel-Boston-Berlin: Birkhäuser Verlag, 2004. - 390 p.

[4] Matiychuk M.I. Parabolic and elliptic problems in Dini spaces: a monograph. - Chernivtsi, 2010. - 248 p.

[5] Drin S.S., Drin Y.M. Cauchy problem for the model equation of fractal diffusion // International scientific conference “Modern problems of mathematical modeling and computational methods”, February 19-22, 2015 (Rivne, 2015). - P. 74.

Cite
ACS Style
Drin , S.S.; Drin , Y.M. Cauchy problem for the fractal diffusion equation with argument deviation. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Drin SS, Drin YM. Cauchy problem for the fractal diffusion equation with argument deviation. Bukovinian Mathematical Journal. 2016; 3(2).
Chicago/Turabian Style
Svitlana Serhiyivna Drin , Yaroslav Mykhailovych Drin . 2016. "Cauchy problem for the fractal diffusion equation with argument deviation". Bukovinian Mathematical Journal. 3 no. 2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings