Перейти до основного вмісту
Bifurcation of cycles of parabolic systems with delay and small diffusion
Klevchuk Ivan 1
1 Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: bifurcation of cycles, parabolic systems, small diffusion
Abstract
We prove the existence of periodic solutions in autonomous parabolic system of differential equations with retarded argument and small diffusion on the circle. We consider the problem of the existence and stability of traveling waves. We obtain the bifurcation equations.
References

[1] Hale J. Theory of functional-differential equations. - M.: Mir, 1984. - 421 p.

[2] Fodchuk V.I., Klevchuk I.I. Integral sets and the principle of reduction for differential-functional equations// Ukr. mat. jurn.- 1982. - 34, № 3.- P. 334-340.

[3] Klevchuk I.I. Homoclinic points for a singularly perturbed system of differential equations with a delay // Ukrainian Mathematical Journal - 2002. - 54 , № 4. - P. 563 - 567.

[4] Klevchuk, I.I. Bifurcation of the equilibrium position in the system of nonlinear parabolic equations with a transformed argument (in Russian) // Ukr. mat.zhurn. - 1999. - 51, № 10. - P. 1342 -1351.

[5] Klevchuk I.I. Existence of a countable number of cycles in hyperbolic systems of differential equations with transformed argument // Nonlinear oscillations. - 2015. - 18 , № 1. - C. 71 - 78.

[6] Belan, E.P.; Samoylenko, A.M. Dynamics of periodic modes of the phenomenological equation of spin combustion (in Russian) // Ukr. mat. zhurn. - 2013. -65, № 1. - P. 21 - 43.

[7] Mishchenko E.F., Kolesov Y.S., Kolesov A.Y., Rozov N.H. Periodic motions and bifurcation processes in singularly perturbed systems.  M.: Fizmatlit, 1995.- 336 p.

[8] Mishchenko E.F., Sadovnichiy V.A., Kolesov A.Yu., Rozov N.Kh. Autowave processes in nonlinear media with diffusion. - Moscow: Fizmatlit, 2005. - 430 p.

[9] Bogolyubov N.N., Mitropolsky Yu.A. Asymptotic methods in the theory of nonlinear oscillations. - M.: Nauka, 1974. - 502 p.

[10] Klevchuk I.I., Fodchuk V.I. Bifurcation of special points of differential-functional equations // Ukr. mat. zhurn.  - 1986. - 38, № 3. - P. 324 - 330.

Cite
ACS Style
Klevchuk, I. Bifurcation of cycles of parabolic systems with delay and small diffusion. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Klevchuk I. Bifurcation of cycles of parabolic systems with delay and small diffusion. Bukovinian Mathematical Journal. 2016; 3(2).
Chicago/Turabian Style
Ivan Klevchuk. 2016. "Bifurcation of cycles of parabolic systems with delay and small diffusion". Bukovinian Mathematical Journal. 3 no. 2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings