Перейти до основного вмісту
A nonlocal multipoint problem for a differential operator equation of second order
Gorodetskii Vasyl 1 , Martynyuk Olga 1 , Kolisnyk Ruslana 1
1 Department of Algebra and Informatics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: nonlocal multipoint problem, a second order evolution, Fourier series
Abstract
We establish the solvability of a nonlocal multipoint problem for a second order evolution equation with respect to time variable with an operator having discrete spectrum. A nonlocal condition is considered to be satisfied in the weak sense in the space of formal Fourier series that are identified with continuous linear functionals (generalized elements) on some space connected with a given operator.
References

[1] Gaisin A.M. Estimation of Dirichlet series with Feyer lacunae // Dokl. RAS.  2000.  Vol. 370, No6. С.735737.

[2]  Nakhushev А.М. An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water // Differentsial'nye Uravneniya (in Russian). 1982. - 18 . - N 1, 72 - 81

[3]  Maĭkov, A. R.; Poezd, A. D.; Yakunin, S. A.; An efficient method for calculating nonstationary radiation conditions that are nonlocal in time for waveguide systems, Zh. Vychisl. Mat. i Mat. Fiz. (in Russian). 30 (N 8) (1990), 1267 - 1271; translation in U.S.S.R. Comput. Math. and Math. Phys,. 30 (1990), no. 4, 213-216 (1991).

[4] Nakhushev A.M., Equations of Mathematical Biology, Vysshaya Shkola, Moscow, 1995.

[5] Belavin I.A., Kapitsa S.P., Kurdyumov S.P., Mathematical model of global demographic processes taking into account spatial distribution,Zhurn. comput. math. and mat. phys. 38(N 6) (1988), 885902.

[6]  Bouzinab A., Arino O., On the exiand uniqueness for an age-depent population model with nonli- near growth, Facta Univ. Ser. Math Inf. 8 (1993), 55-68.

[7]  Cannon I.R., J. van der Hoek, Diffusion subject to the specification of mass, J. Math. Anal. and Appl. 115 (N 2) (1986), 517-529.

[8]  Song J., Some developments in mathematical demography and their applicatioto the Peoples Republic of China, Theor Pop. Biol. 22 (N 3) (1982), 382-391.

[9]  A.A. Dezin, Operators withfirst derivative with respect to "time"and non-local boundary conditions, Izv. Akad. Nauk SSSR Ser. Mat. (in Russian). 31 (N 1) (1967), 61-86.

[10] V.K. Romanko, Boundary value problems for a certain class of diferential operators, Differencial'nye Uravnenija (in Russian). 10 (N 1) (1974), 117-131.

[11]  M. Junusov, Operator equations with small parameter and nonlocal boundary conditions, Differentsial'nye Uravneniya (in Russian). 17 (N 1) (1981), 172-181.

[12]  A.H. Mamyan, General boundary problems on layer, Dokl. Akad. Nauk SSSR (in Russian). 267 (N 2) (1982), 292-296.

[13]  Makarov А.А., On the existence of a well-posed two-point boundary value problem in a layer for systems of pseudo-differential equations, Differentsial'nye Uravneniya (in Russian). 30 (N 1) (1994), 144-150; translation in Differential Equations, 30 (1994), no. 1, 133-138.

[14]  A.M. Nakhushev, On nonlocal boundary value problems with displacement and their relationship with loaded equations, Differentsial'nye Uravneniya (in Russian). 21 (N 1) (1985), 92-101.

[15]  Samarskiĭ, A. A., Some problems of the theory of differential equations, Differentsial'nye Uravneniya (in Russian). 16 (N 11) (1980), 1925-1935.

[16]  B.Yu. Ptashnyk, V.S. Il'kiv, I.Ya. Kmit', V.M. Polischuk, Nonlocal boundary value problems with partial differential equations , Naukova Dumka, Kyiv, 2002.

[17] Česalin, V. I., A problem with nonlocal boundaryconditions for operator-differential equations of odd order, Differentsial'nye Uravneniya (in Russian). 13 (N 3) (1977), 468-476.

[18]  Skubachevskiĭ, A. L., Model nonlocal problems for elliptic equations in dihedral angles, Differentsial'nye Uravneniya (in Russian). 26 (N 1) (1990), 106-115.

[19] Gorbachuk V.I., On the solvability of the Dirichlet problem for the second order differential-operator equation in different spaces, Direct and inverse problems of the spectral theory of differential operators: Collection of scientific papers, Kiev, 1985.

[20] Gorodetsky V.V., The Cauchy problem for evolutionary equations of infinite order, Ruta, Chernivtsi, 2005.

[21] Babenko, K. I., On a new problem of quasianalyticity and on the Fourier transform of entire functions Trudy Moskov. Mat. Obšč. (in Russian). 5 (1956), 523-542.

[22] Gorbachuk V.I., Gorbachuk M.L., Boundary values of solutions of differential-operator equations, Nauk. dumka, Kiev, 1984.

[23] Gorodetsky V.V., The Problem of Riemann Localization: Some Aspects and Applications, Ruta, Chernivtsi, 1998.

Cite
ACS Style
Gorodetskii, V.; Martynyuk, O.; Kolisnyk, R. A nonlocal multipoint problem for a differential operator equation of second order. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Gorodetskii V, Martynyuk O, Kolisnyk R. A nonlocal multipoint problem for a differential operator equation of second order. Bukovinian Mathematical Journal. 2016; 3(2).
Chicago/Turabian Style
Vasyl Gorodetskii, Olga Martynyuk, Ruslana Kolisnyk. 2016. "A nonlocal multipoint problem for a differential operator equation of second order". Bukovinian Mathematical Journal. 3 no. 2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings