Перейти до основного вмісту
Wave operators for singular asymmetric perturbation of a self-adjoint operator
Vdovenko Tetyana Ivanivna 1 , Dudkin Mykola Evgenovich 1
1 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
Keywords: wave operators, singular non-symmetrical drilling, self-conjugate operator, scattering matrix
Abstract

We provide with the wave operators for a rank one of singular non-symmetric perturbation $Ã = A + α 〈⋅,ω_1〉 ω_2$ of a self-adjoint semi-bounded operator $A,$  that is, the operator which is perturbed by a non-symmetric potential $ω_1 ≠ ω_2$ . The expressions are given in the strong sense. The scattering matrix is also given.

References
[1] Akhiezer N.I.Theory of linear operators in Hilbert space. - M.: Nauka, 1966. -544 с.
[2] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable models in quantum mechanics. Second edition, With an appendix by Pavel Exner, AMS Chelsea Publishing, Providence, RI, 2005. xiv+488 pp.
[3] Albeverio S., Kurasov P. Singular perturbations of differential operators. Solvable Schr ̈odinger type operators, London Mathematical Society Lecture Note Series, 271, Cambridge University Press, Cambridge, 2000. xiv+429 pp.
[4] Vdovenko T.I., Dudkin M.E. Singular rank-one asymmetric perturbations of a self-adjoint operator // “Spectral theory of operators and set operators”. Collection of works of the Institute of Mathematics of the National Academy of Sciences of Ukraine, 2015. - T.12. - No. 1. - P. 57-73.
[5] Kato T. Wave Operators and Similarity for Some Non-selfadjoint Operators // Math. Annalen. – 1966. – 162 . – P. 258–279.
[6] Koshmanenko V. Singular quadratic forms in perturbation theory. Translated from the 1993 Russian original. Mathematics and its Applications, 474. Kluwer Academic Publishers, Dordrecht, 1999. viii+308 pp.
[7] Nizhnik L. Inverse nonlocal Sturm-Liouville problem // Inverse problems. – 2010. – 26 . – 9 p.
[8] Nizhnik L. Inverse spectral nonlocal problem for the first order ordinary differential equation // Tamkang Journal of Mathematics. – 2011. – 42 , no. 3. – P. 385–394.
Cite
ACS Style
Vdovenko, T.I.; Dudkin, M.E. Wave operators for singular asymmetric perturbation of a self-adjoint operator. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Vdovenko TI, Dudkin ME. Wave operators for singular asymmetric perturbation of a self-adjoint operator. Bukovinian Mathematical Journal. 2016; 3(1).
Chicago/Turabian Style
Tetyana Ivanivna Vdovenko, Mykola Evgenovich Dudkin. 2016. "Wave operators for singular asymmetric perturbation of a self-adjoint operator". Bukovinian Mathematical Journal. 3 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings